Hydrogenolysis of glycerol over Pt/C catalyst in combination with alkali metal hydroxidesꢀ
ꢀ285
Scheme 2 is not very specific. Although the coordination [8] Dam J., Djanashvili K., Kapteijn F., Hanefeld U., Pt/Al O3
2
+
catalyzed 1,3-propanediol formation from glycerol using
tungsten additives, ChemCatChem, 2013, 5, 497-505.
interaction between Li and oxygenated compounds has
been observed in the hydrogenation of glycerose [27] and
ketones [28], the exact path for this interaction is not clear
and needs further study. Further work is under progress
to gain some direct evidence for the surface reaction
process.
[
9] Gong L.F., Lu Y., Ding Y.J., Lin R.H., Li J.W., Dong W.D., et al.,
Selective hydrogenolysis of glycerol to 1,3-propanediol over
a Pt/WO /TiO /SiO catalyst in aqueous media, Appl. Catal. A
3
2
2
Gen., 2010, 390, 119-126.
[
[
[
10] Qin L.Z., Song M.J., Chen C.L., Aqueous-phase deoxygenation
of glycerol to 1,3-propanediol over Pt/WO /ZrO catalysts in a
3
2
fixed-bed reactor, Green Chem., 2010, 12, 1466-1472.
11] Zhu S.H., Zhu Y.L., Hao S.L., Chen L.G., Zhang B., Li Y.W.,
Aqueous-phase hydrogenolysis of glycerol to 1,3-propanediol
over Pt-H SiW O /SiO , Catal. Lett., 2012, 142, 267-274.
4
Conclusions
4
12 40
2
12] García-Fernández S., Gandarias I., Requiesa J., Güemez M.B.,
Bennici S., Auroux A., et al., New approaches to the Pt/WOx/
Al O catalytic system behavior for the selective glycerol
Alkali metal hydroxides are good promoters for the
hydrogenolysis of glycerol to 1,2-PDO over Pt/C catalyst.
LiOH exhibited the best promotion effect in terms of
2
3
hydrogenolysis to 1,3-propanediol, J. Catal., 2015, 323, 65-75.
[13] Maris E.P., Davis R.J., Hydrogenolysis of glycerol over carbon-
supported Ru and Pt catalysts, J. Catal., 2007, 249, 328-337.
14] Maris E.P., Ketchie W.C., Murayama M., Davis R.J., Glycerol
hydrogenolysis on carbon-supported PtRu and AuRu bimetallic
catalysts, J. Catal., 2007, 251, 281-294.
+
glycerol conversion and 1,2-PDO selectivity. Li plays a
role in assisting the glycerol hydrogenolysis reaction
[
–
when adequate OH is present. A coordination interaction
+
between Li and the alkoxide species probably exists in the
process of dehydrogenation of glycerol to glyceraldehyde. [15] Yuan Z.L., Wu P., Gao J., Lu X.Y., Hou Z.Y., Zheng, X.M., Pt/Solid-
Base: A predominant catalyst for glycerol hydrogenolysis in a
base-free aqueous solution, Catal. Lett., 2009, 130, 261-265.
Acknowledgment: This work was supported by
[
16] Oberhauser W., Evangelisti C., Jumde R.P., Psaro R., Vizza F.,
Bevilacqua M., et al., Platinum on carbonaceous supports for
glycerol hydrogenolysis: Support effect, J. Catal., 2015, 325,
the National Natural Science Foundation of China
(
No. 21302237), the Chongqing Research Program
of Basic Research and Frontier Technology (No.
1
11-117.
cstc2014jcyjA90004), and the Scientific and Technological [17] Wang S., Liu H., Selective hydrogenolysis of glycerol to
propylene glycol on Cu–ZnO catalysts, Catal. Lett., 2007, 117,
Research Program of Chongqing Municipal Education
Commission (No. KJ1601309).
6
2-67.
[
[
18] Marinoiu A., Cobzaru C., Carcadea E., Capris C., Tanislav V.,
Raceanu M., Hydrogenolysis of glycerol to propylene glycol
using heterogeneous catalysts in basic aqueous solutions,
React. Kinet., Mech. Catal., 2013, 110, 63-73.
References
19] Feng J., Wang J.B., Zhou Y.F., Fu H.Y., Chen H., Li X.J., Effect of
base additives on the selective hydrogenolysis of glycerol over
[
[
[
1] Werpy T., Petersen G., Top Value Added Chemicals from
Biomass, Volume I: Results of Screening for Potential
Candidates from Sugars and Synthesis Gas, U.S. Department of
Energy: Washington, DC, 2004.
2] Zhou C.H., Beltramini J.N., Fan Y.X., Lu G.Q., Chemoselective
catalytic conversion of glycerol as a biorenewable source to
valuable commodity chemicals, Chem. Soc. Rev., 2008, 37,
Ru/TiO catalyst, Chem. Lett., 2007, 36, 1274-1275.
2
[20] Feng J., Fu H.Y., Wang J.B., Li R.X., Chen H., Li X.J.,
Hydrogenolysis of glycerol to glycols over ruthenium catalysts:
Effect of support and catalyst reduction temperature, Catal.
Commun., 2008, 9, 1458-1464.
[21] Feng J., Xiong W., Jia Y., Wang J.B., Liu D.R., Chen H., et al.,
5
27-549.
Hydrogenolysis of glycerol to 1,2-propanediol over Ru/TiO
catalyst, Chin. J. Catal., 2011, 32, 1545-1549.
2
3] Martin A., Armbruster U., Gandarias I., Arias P.L., Glycerol
hydrogenolysis into propanediols using in situ generated
hydrogen–A critical review, Eur. J. Lipid Sci. Technol., 2013, 115,
[22] Feng J., Xiong W., Xu B., Jiang W.D., Wang J.B., Chen H.,
Basic oxide-supported Ru catalysts for liquid phase glycerol
hydrogenolysis in an additive-free system, Catal. Commun.,
2014, 46, 98-102.
9
-27.
[
[
4] Nakagawa Y., Tomishige K., Heterogeneous catalysis of the
glycerol hydrogenolysis, Catal. Sci. Technol., 2011, 1, 179-190.
5] Feng J., Xu B., Reaction mechanisms for the heterogeneous
hydrogenolysis of biomass-derived glycerol to propanediols,
Prog. React. Kinet. Mech., 2014, 39, 1-15.
6] Mane R.B., Rode C.V., Simultaneous glycerol dehydration
and in situ hydrogenolysis over Cu–Al oxide under an inert
atmosphere, Green Chem., 2012, 14, 2780-2789.
[23] Ma L., He D.H., Li Z.P., Promoting effect of rhenium on catalytic
performance of Ru catalysts in hydrogenolysis of glycerol to
propanediol, Catal. Commun., 2008, 9, 2489-2495.
[24] Ma L., He D.H., Influence of catalyst pretreatment on catalytic
[
[
properties and performances of Ru–Re/SiO in glycerol
2
hydrogenolysis to propanediols, Catal. Today, 2010, 149,
148-156.
7] Feng J., Xu B., Liu D.R., Xiong W., Wang J.B., Production of 1,3-
propanediol by catalytic hydrogenolysis of glycerol, Adv. Mater.
Res., 2013, 791-793, 16-19.
[25] Lahr D.G., Shanks B.H., Effect of sulfur and temperature on
ruthenium-catalyzed glycerol hydrogenolysis to glycols, J.
Catal., 2005, 232, 386-394.
Unauthenticated
Download Date | 3/20/17 4:45 PM