Trimethylethoxysilane Liquid-Phase Kinetics
J. Phys. Chem. A, Vol. 103, No. 21, 1999 4241
begins and does not require exceptionally fast condensation in
the newly formed phase to explain the lack of intermediates
and products in the liquid-satate 29Si NMR spectra.
(17) Spitzner, H.; Wandschneider, S.; Lange, D.; Kelling, H. J. Prakt.
Chem. 1996, 338, 376.
(18) Pohl, E. R.; Osterholtz, F. D. Kinetics and mechanism of aqueous
hydrolysis and condensation of alkyltrialkoxysilanes. In Molecular Char-
acterization of Composite Interfaces; Ishida, H., Kumar, G., Eds.; Plenum
Press: New York, 1985.
One final note: if the new peak we observe in the 29Si NMR
spectra is a good indicator of phase separation, it appears that
one point on the two-phase boundary of this multicomponent
system is (the composition at 20 min) 54 mol % ethanol, 40
mol % water, 0.31 mol % trimethylethoxyilane, 3.6 mol %
trimethylsilanol, and 1.7 mol % hexamethyldisiloxane (with
(19) Pohl, E. R.; Osterholtz, F. D. Kinetics and mechanism of condensa-
tion of alkylsilanols in aqueous solution. In Silanes, Surfaces, and Interfaces;
Leyden, D. E., Ed.; Gordon and Breach: New York, 1986.
(20) Osterholtz, F. D.; Pohl, E. R. Kinetics of the hydrolysis and
condensation of organofunctional alkoxysilanes: a review. In Silanes and
Other Coupling Agents; Mittal, K., Ed.; VSP: Utrecht, 1992.
0
.0023 M HCl).
(
21) Popovych, O.; Tomkins, R. P. T. Nonaqueous Solution Chemistry;
Wiley: New York, 1981.
22) Assink, R. A.; Kay, B. D. J. Non-Cryst. Solids 1988, 99, 359.
References and Notes
(
(
1) Brinker, C. J.; Scherer, G. W. Sol-gel Science: The Physics and
Chemistry of Sol-Gel Processing; Academic Press: Boston, 1990.
2) Mark, J. E.; Lee, C. Y.-G.; Bianconi, P. A., Eds. Hybrid Inorganic-
Organic Composites; American Chemical Society: Washington, DC, 1995.
3) Schaefer, D. W.; Wilkes, G. L.; Sanchez, C.; Coltrain, B., Eds.
(23) Assink, R. A.; Kay, B. D. Coll. Surf. A 1993, 74, 1.
(24) Harris, R. K. Nuclear Magnetic Resonance Spectroscopy. A Physico-
Chemical View; Wiley: New York, 1986.
(
(
25) This peak (∼ 110 ppm) is far from the peaks of TMES and its
(
condensation products, but we collected spectra with the broad silica peak
to avoid base line distortion by folding that peak into the measured spectra.
Better Ceramics Through Chemistry VII; Materials Research Society:
Pittsburgh, PA, 1996.
(26) Suda, S.; Iwaida, M.; Yamashita, K.; Umegaki, T. J. Non-Cryst.
(
4) Mann, S.; Burkett, S. L.; Davis, S. A.; Fowler, C. E.; Mendelson,
N. H.; Sims, S. D.; Walsh, D.; Whilton, N. T. Chem. Mater. 1997, 9, 2300.
5) Navrotsky, A. Thermochemistry of Crystalline and Amorphous
Solids 1994, 176, 26.
(27) Hook, R. J. J. Non-Cryst. Solids 1996, 192, 1.
(
(28) Williams, E. A.; Cargioli, J. D.; LaRochelle, R. W. J. Organomet.
Silica. In Silica: Physical BehaVior, Geochemistry and Materials Applica-
tions; Heaney, P. J., Prewitt, C. T., Gibbs, G. V. G., Eds.; Mineralogical
Society of America: Washington, DC, 1994.
Chem. 1976, 108, 153.
(29) Rankin, S. E.; Macosko, C. W.; McCormick, A. V. Mat. Res. Soc.
Symp. Proc. 1996, 435, 113.
(6) Brunet, F.; Cabane, B.; Dubois, M.; Perly, B. J. Phys. Chem. 1991,
9
5, 945.
(30) Rankin, S. E.; Sˇ ef cˇ ´ı k, J.; McCormick, A. V. Ind. Eng. Chem. Res.
1999. Manuscript submitted for publication.
(31) Crow, E. L.; Davis, F. A.; Maxfield, M. W. Statistics Manual;
(
(
7) Sanchez, J.; McCormick, A. V. J. Phys. Chem. 1992, 96, 8973.
8) Friberg, S. E.; Yang, J.; Amran, A.; Sj o¨ blom, J.; Farrington, G. J.
Phys. Chem. 1994, 98, 13528.
9) Ng, L. V.; McCormick, A. V. J. Phys. Chem. 1996, 100, 12517.
Dover, New York, 1960.
(
(
32) This is justified by the observations that basicities of silanols and
(
10) Fyfe, C. A.; Aroca, P. P. J. Phys. Chem. B 1997, 101, 9504.
11) By distribution, we refer not only to size differences but also to
33
alcohols are comparable (so Kp ∼ 1) and that the concentration of silanol
groups is at the very most one fifth the concentration of ethanol for any of
these solutions. If S refers to water, Kp would be expected to be very small.
(
structural differences. For instance, polycyclic silicates are likely to be very
important in the stability of acid-catalyzed sol-gel systems.
(33) West, R.; Baney, R. H. J. Amer. Chem. Soc. 1959, 81, 6145.
(12) Sˇ ef cˇ ´ı k, J.; Rankin, S. E.; Kirchner, S. J.; McCormick, A. V. J. Non-
(34) Tourky, A. R.; Abdel-Hamid, A. A.; Slim, I. Z. Z. Phys. Chem.
Cryst. Solids 1999. Manuscript submitted for publication.
Leipzig 1972, 250, 49.
(
13) Grubb, W. T. J. Am. Chem. Soc. 1954, 76, 3408.
(
35) Tremillon, B. Chemistry in Non-Aqueous SolVents; D. Reidel:
(14) Rutz, W.; Lange, D.; Kelling, H. Z. Anorg. Allg. Chem. 1985, 528,
Boston, 1974 (in English).
9
8.
(
15) Bilda, S.; Lange, D.; Popowski, E.; Kelling, H. Z. Anorg. Allg.
(36) Saeten, J. O.; Selle, M. H.; Sj o¨ blom, J.; Friberg, S. E.; Gestblom,
B. J. Solution Chem. 1991, 20, 1149.
(37) Lee, K.; Look, J. L.; Harris, M. T.; McCormick, A. V. J. Coll. Int.
Sci. 1997, 194, 78.
Chem. 1987, 550, 186.
16) Bilda, S.; Lange, D.; Popowski, E.; Kelling, H. Z. Anorg. Allg.
Chem. 1988, 564, 155.
(