S. Triwahyono et al. / Journal of Catalysis 303 (2013) 50–59
59
found that the addition Pt on MoO3/TiO2 catalyst resulted in an in-
crease in the catalytic activity of the system in favor of hydrocrack-
ing products at high reaction temperatures due to the
enhancement in the metallic character of the system by metallic
Pt(0), whereas Matsuda and co-workers have reported the effects
of Pt on the catalytic activity of H2-reduced MoO3-based catalysts
[47,48]. They found that H2-reduced MoO3 was almost inactive
for heptane isomerization, while higher activity was obtained on
H2-reduced Pt/MoO3. They suggested that the enhancement in
the activity of H2-reduced Pt/MoO3 corresponds to the conversion
of hydrogen molybdenum bronze, HxMoO3, to acidic molybdenum
oxyhydride, MoOxHy. The MoOxHy species plays an important role
in the generation of acid sites and led to the enhancement in the
catalytic activities for heptane isomerization.
gratitude also goes the Hitachi Scholarship Foundation for the
Gas Chromatograph Instruments Grant.
References
[1] J.G. Santiesteban, D.C. Calabro, C.D. Chang, J.C. Vartulli, T.J. Fiebig, R.D. Bastian,
J. Catal. 202 (2001) 25.
[2] M. Busto, V.M. Benitez, C.R. Vera, J.M. Grau, J.C. Yori, Appl. Catal. A: Gen. 347
(2008) 117.
[3] K. Kim, R. Ryoo, H. Jang, M. Choi, J. Catal. 288 (2012) 115.
[4] I.R. Choudhury, K. Hayasaka, J.W. Thybaut, C.S.L. Narasimhan, J.F. Denayer, J.A.
Martens, G.B. Marin, J. Catal. 290 (2012) 165.
[5] H.D. Setiabudi, A.A. Jalil, S. Triwahyono, J. Catal. 294 (2012) 128.
[6] Y. Ono, Catal. Today 81 (2003) 3.
[7] A.H. Karim, S. Triwahyono, A.A. Jalil, H. Hattori, Appl. Catal. A: Gen. 433–434
(2012) 49.
[8] D. Fraenkel, N.R. Jentzsch, C.A. Starr, P.V. Nikrad, J. Catal. 274 (2010) 29.
[9] X. Zhu, L.L. Lobban, R.G. Mallinson, D.E. Resasco, J. Catal. 281 (2011) 21.
[10] N.H. N Kamarudin, A.A. Jalil, S. Triwahyono, R.R. Mukti, M.A.A. Aziz, H.D.
Setiabudi, M.N.M. Muhid, H. Hamdan, Appl. Catal. A: Gen. 104 (2012) 431–432.
[11] S. Triwahyono, T. Yamada, H. Hattori, Catal. Lett. 85 (2003) 109.
[12] T.N. Vu, J. van Gestel, J.P. Gilson, C. Collet, J.P. Dath, J.C. Duchet, J. Catal. 231
(2005) 468.
[13] M. Occhiuzzi, D. Cordischi, S. De Rossi, G. Ferraris, D. Gazzoli, M. Valigi, Appl.
Catal. A: Gen. 351 (2008) 29.
[14] S. Kuba, P. Lukinskas, R. Ahmad, F.C. Jentoft, R.K. Grasselli, B.C. Gates, H.
Knözinger, J. Catal. 219 (2003) 376.
[15] X. Wang, H. Wang, Y. Liu, F. Liu, Y. Yu, H. He, J. Catal. 279 (2011) 301.
[16] D.G. Barton, S.L. Soled, G.D. Meitzner, G.A. Fuentes, E. Iglesia, J. Catal. 181
(1999) 57.
[17] E. Iglesia, D.C. Barton, S.L. Soled, S. Miseo, J.E. Baumgartner, W.E. Gates, G.A.
Fuentes, G.D. Meitzner, Stud. Surf. Sci. Catal. 101 (1996) 533.
[18] P. Afanasiev, Mat. Chem. Phys. 47 (1997) 231.
Fig. 10 shows the stability of MoO3–ZrO2 and Pt/MoO3–ZrO2 in
the n-heptane hydroisomerization at 573 K. The reaction was done
for more than 30 h with the intervals between each dose were kept
constant at 40 min. The activity of the MoO3–ZrO2 and Pt/MoO3–
ZrO2 reaches
a steady-state condition within seven pulses
(280 min) and decreased slightly after 12 pulses (480 min). How-
ever, the activity of the catalysts recovered after the activation in a
hydrogen stream at 623 K for 3 h. It is noteworthy that the high
activity of the MoO3–ZrO2 and Pt/MoO3–ZrO2 in the alkane hydro-
isomerization still has been observed after 30 h.
4. Conclusion
[19] A. Calafat, L. Avilán, J. Aldana, Appl. Catal. A: Gen. 201 (2000) 215.
[20] S. Xie, K. Chen, A.T. Bell, E. Iglesia, J. Phys. Chem. B 104 (2000) 10059.
[21] K.V.R. Chary, K.R. Reddy, G. Kishan, J.W. Niemantsverdriet, G. Mestl, J. Catal.
226 (2004) 283.
[22] C. Kenney, Y. Maham, A.E. Nelson, Thermochim. Acta 434 (2005) 55.
[23] N.N. Ruslan, N.A. Fadzlillah, A.H. Karim, A.A. Jalil, S. Triwahyono, Appl. Catal. A:
Gen. 406 (2011) 102.
[24] N.N. Ruslan, S. Triwahyono, A.A. Jalil, S.N. Timmiati, N.H.R. Annuar, Appl. Catal.
A: Gen. 413–414 (2012) 176.
[25] S. Triwahyono, Z. Abdullah, A.A. Jalil, J. Nat. Gas. Chem. 15 (2006) 247.
[26] H. Toraya, S. Yoshimura, S. Somiya, J. Am. Ceram. Soc. 67 (1984) 119.
[27] M.A.A. Aziz, N.H.N. Kamarudin, H.D. Setiabudi, H. Hamdan, A.A. Jalil, S.
Triwahyono, J. Nat. Gas Chem. 21 (2012) 29.
The introduction of Pt on MoO3–ZrO2 did not change much the
crystallinity and BET specific surface area of MoO3–ZrO2 but al-
tered significantly the concentration of acid sites of MoO3–ZrO2.
Particularly, the presence of Pt partially eliminated strong perma-
nent Brønsted and Lewis acid sites on MoO3–ZrO2. The alteration of
the acidity is not due to the Mo loading, as both MoO3–ZrO2 and Pt/
MoO3–ZrO2 have almost similar Mo loading. This alteration may be
due to the small decrease in the crystallinity of ZrO2 during the
treatment. Interaction of molecular hydrogen with MoO3–ZrO2
showed the formation of protonic acid sites with simultaneous de-
crease in the Lewis acid sites through hydrogen spillover phenom-
enon in which the protonic acid sites act as active sites in n-hexane
and n-heptane hydroisomerization. Contrarily, the presence of Pt
on MoO3–ZrO2 lowered the catalytic activity of MoO3–ZrO2. Quan-
titative hydrogen adsorption, ESR and IR spectroscopy revealed
that the presence of Pt enhanced the hydrogen adsorption rate
and capacity of MoO3–ZrO2; however, the interacted-hydrogen
did not successively form active protonic acid sites but intensified
the Lewis acid sites. Therefore, the activity of Pt/MoO3–ZrO2 in the
linear alkane isomerization is lower than that of MoO3–ZrO2 due to
the inability of Pt to promote the formation of active protonic acid
sites from molecular hydrogen on the surface of catalyst. In addi-
tion, the low activity of Pt/MoO3–ZrO2 was not due to the low
Mo loading, as the Mo loading is almost similar for MoO3–ZrO2
with and without Pt. The low activity was also not due to the
low concentration of permanent Brønsted acid sites in which the
permanent Brønsted acid sites have no role in the isomerization.
[28] S. Triwahyono, A.A. Jalil, S.N. Timmiati, N.N. Ruslan, H. Hattori, Appl. Catal. A:
Gen. 372 (2010) 103.
[29] K. Chen, S. Xie, E. Iglesia, A.T. Bell, J. Catal. 189 (2000) 421.
[30] M. Tamura, K. Shimizu, A. Satsuma, Appl. Catal. A: Gen. 433–434 (2012) 135.
[31] S. Triwahyono, T. Yamada, H. Hattori, Appl. Catal. A: Gen. 242 (2003) 101.
[32] M.A. Alotaibi, E.F. Kozhevnikova, I.V. Kozhevnikov, J. Catal. 293 (2012) 141.
[33] M. Busto, C.R. Vera, J.M. Grau, Fuel Process. Technol. 92 (2011) 1675.
[34] P. Sun, G. Siddiqi, W.C. Vining, M. Chi, A.T. Bell, J. Catal. 282 (2012) 165.
[35] S. Triwahyono, A.A. Jalil, H. Hattori, J. Nat. Gas Chem. 16 (2007) 252.
[36] S. Triwahyono, A.A. Jalil, R.R. Mukti, M. Musthofa, N.A.M. Razali, M.A.A. Aziz,
Appl. Catal. A: Gen. 407 (2011) 91.
[37] H.D. Setiabudi, S. Triwahyono, A.A. Jalil, N.H.N. Kamarudin, M.A.A. Aziz, J. Nat.
Gas Chem. 20 (2011) 477.
[38] S. Triwahyono, T. Yamada, H. Hattori, Appl. Catal. A: Gen. 250 (2003) 65.
[39] N. Satoh, J.-i. Hayashi, H. Hattori, Appl. Catal. A: Gen. 202 (2000) 207.
[40] M. Occhiuzzi, D. Cordishi, R. Dragone, J. Phys. Chem. B 106 (2002) 12464.
[41] S. Al-Kandari, H. Al-Kandari, F. Al-Kharafi, A. Katrib, Appl. Catal. A: Gen. 341
(2008) 160.
[42] H. Al-Kandari, F. Al-Kharafi, A. Katrib, Appl. Catal. A: Gen. 361 (2009) 81.
[43] H. Al-Kandari, F. Al-Kharafi, A. Katrib, Appl. Catal. A: Gen. 383 (2010) 141.
[44] H. Al-Kandari, A.M. Mohamed, F. Al-Kharafi, A. Katrib, Catal. Commun. 12
(2011) 1188.
[45] H. Al-Kandari, A.M. Mohamed, F. Al-Kharafi, M.I. Zaki, A. Katrib, Appl. Catal. A:
Gen. 417–418 (2012) 298.
[46] H. Al-Kandari, A.M. Mohamed, S. Al-Kandari, F. Al-Kharafi, G.A. Mekhemer, M.I.
Zaki, A. Katrib, J. Mol. Catal. A: Chem. 368–369 (2013) 1.
[47] T. Matsuda, T. Ohno, Y. Hiramatsu, Z. Li, H. Sakagami, N. Takahashi, Appl. Catal.
A: Gen. 362 (2009) 40.
[48] T. Ohno, Z. Li, N. Sakai, H. Sakagami, N. Takahashi, T. Matsuda, Appl. Catal. A:
Gen. 389 (2010) 52.
Acknowledgments
This work was supported by the Universiti Teknologi Malaysia
(Malaysia) through Research University Grant No. 04H26. Our