6
7
8
9
R. Atkinson and J. Arey, Chem. Rev., 2003, 103, 4605–4638.
R. Atkinson, Int. J. Chem. Kinet., 1997, 29, 99–111.
P. Devolder, J. Photochem. Photobiol. A, 2003, 157, 137–147.
J. J. Orlando, G. S. Tyndall and T. J. Wallington, Chem. Rev.,
Conclusions
The relative-kinetics of the decomposition of 2-methyl-2-bu-
toxyl have been re-investigated using the near-UV photolysis
of dilute (ppmv) mixtures of 2-methyl-2-butyl nitrite as the
source of alkoxyl radicals. Yields of acetone and butanone
were measured at a total pressure of 1 atm and as a function of
temperature between 280 and 340 K. The relative rate coeffi-
cient (k /k ) obtained at 298 K is around a factor of 20 smaller
2
003, 103, 4657–4689.
1
0
1
W. P. L. Carter, A. C. Lloyd, J. L. Sprung and J. N. Pitts Jr., Int.
J. Chem. Kinet., 1979, 11, 45.
R. A. Cox, K. F. Patrick and S. A. Chant, Environ. Sci. Technol.,
1981, 15, 587.
1
12 R. Atkinson, E. S. C Kwok, J. Arey and S. M. Aschmann,
Faraday Discuss., 1995, 100, 23.
13 N. Meunier, J. F. Doussin, E. Chevallier, R. Durand-Jolibois, B.
Picquet-Varrault and P. Carlier, Phys. Chem. Chem. Phys., 2003,
1
2
7
than that estimated by Atkinson by extrapolation of the
3
higher temperature data of Batt et al. Previous experimental
determinations of k /k in which 2-methyl-2-butoxyl was pro-
duced from the thermal decomposition of dialkyl peroxide
precursors are consistent with the temperature-dependence of
the relative rate coefficients measured in the present investiga-
tion. Results from other studies in which the alkoxyl radical
was produced from the photolysis of dialkyl peroxides or alkyl
nitrites, or from the thermal decomposition alkyl nitrite pre-
cursors are not consistent with the temperature-dependent
1
1
2
5
, 4834–4839.
L. Batt and R. T. Milne, Int. J. Chem. Kinet., 1977, 9, 549.
15 L. Batt and R. T. Milne, Int. J. Chem. Kinet., 1977, 9, 141.
16 S. Dobe, T. Berces and F. Marta, Int. J. Chem. Kinet., 1986, 18,
29.
R. J. Balla, H. H. Nelson and J. R. McDonald, Chem. Phys., 1985,
9, 323–335.
1
4
´
´
´
3
1
1
7
8
9
C. Mund, C. Fockenberg and R. Zellner, Ber. Bunsen. Phys.
Chem., 1998, 102, 709–715.
values of k
1
/k
2
measured in the present investigation. It seems
19 F. Caralp, P. Devolder, C. Fittschen, N. Gomez, H. Hippler, R.
Mereau, M. T. Rayez, F. Striebel and B. Viscolcz, Phys. Chem.
Chem. Phys., 1999, 1, 2935–2944.
likely that these differences are attributable to the effects of
chemical activation in alkoxyl radicals (when formed from the
UV photolysis of organic peroxide precursors) or to additional
carbonyl-forming chemistry occurring in the presence of high
´
2
0
1
P. Devolder, C. Fittschen, A. Frenzel, H. Hippler, G. Poskreby-
shev, F. Striebel and B. Viscolcz, Phys. Chem. Chem. Phys., 1999,
1, 675.
concentrations of alkyl nitrite precursors. The 298 K value of k
1
2
M. Blitz, M. J. Pilling, S. H. Robertson and P. W. Seakins, Phys.
Chem. Chem. Phys., 1999, 1, 73–80.
3
1
derived form the data of Batt et al. is consistent with a non-
linear correlation, between the logarithm of the rate coefficient
and the average IP of the reaction products, previously pre-
22 C. Fittschen, A. Frenkel, K. Imrik and P. Devolder, Int. J. Chem.
Kinet., 1999, 31, 860–866.
23 C. Fittschen, H. Hippler and B. Viscolcz, Phys. Chem. Chem.
Phys., 2000, 2, 1677–1683.
3
0
2
sented by this laboratory. The 298 K value of k —derived
from this latter value for k1 and the relative rate coefficient
determined in the present investigation—is also consistent with
the kinetic correlation plot. Rate coefficients have also been
estimated for the two decomposition channels of the 2-methyl-
2
4
W. Deng, C. J. Wang, D. R. Katz, G. R. Gawinski, A. J. Davis
and T. S. Dibble, Chem. Phys. Lett., 2000, 330, 541–546.
25 W. Deng, A. J. Davis, L. Zhang, D. R. Katz and T. S. Dibble,
J. Phys. Chem. A, 2001, 105, 8985–8990.
2
2
2
6
7
8
L. Zhang, K. A. Kitney, M. A. Ferenac, W. Deng and T. S.
Dibble, J. Phys. Chem. A, 2004, 108, 447–454.
G. Falgayrac, F. Caralp, N. Sokolowski-Gomez, P. Devolder and
C. Fittschen, Phys. Chem. Chem. Phys., 2004, 6, 4127–4132.
D. Johnson, P. Cassanelli and R. A. Cox, J. Phys. Chem. A, 2004,
108, 519–523.
2
as an estimated kinetic reference. Once again, the estimated 298
-pentoxyl radical (R5,6) using the isomerisation of this radical
K values of k and k are consistent with the non-linear kinetic
5
6
correlation which lends support to the choice of an estimated
rate coefficient as the kinetic reference. The 298 K rate coeffi-
cient for the decomposition of 2-methyl-2-pentoxyl to acetone
29 P. Cassanelli, D. Johnson and R. A. Cox, 2005, manuscript in
preparation.
and n-propyl (k ) is similar to that for the decomposition of 2-
5
3
0
D. Johnson, P. Casanelli and R. A. Cox, Atmos. Environ., 2004,
8, 1755–1765.
L. Batt, T. S. A. Islam and G. N. Rattray, Int. J. Chem. Kinet.,
978, 10, 931.
1
methyl-2-butoxyl to acetone and ethyl (k ) which is not un-
3
expected as both reactions give similar products (with similar
3
1
30
values for IPmean). The expression presented by Johnson et al.
1
for the estimation of 298 K rate coefficients for the decomposi-
tion of simple alkoxyl radicals has been updated to incorporate
the revised and previously unreported rate data. This correla-
tion-type SAR appears to be the most accurate, currently
reported, SAR method for estimating (298 K) decomposition
rate coefficients for simple alkoxyl radicals, for which experi-
mental rate data are available at this time.
32 R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr, J. A.
Kerr, M. J. Rossi and J. Troe, J. Chem. Phys. Ref. Data, 1997, 26,
521–1011.
R. Mereau, M. T. Rayez, F. Caralp and J. C. Rayez, Phys. Chem.
3
3
4
´
Chem. Phys., 2000, 2, 3765–3772.
J. Peeters, G. Fantechi and L. Vereecken, J. Atmos. Chem., 2004,
3
4
8, 59–80.
35 J. H. Raley and D. O. Collamer, J. Am. Chem. Soc., 1952, 74,
606.
36 G. R. McMillan, J. Am. Chem. Soc., 1962, 84, 2514.
1
Acknowledgements
3
3
7
8
D. Durant and G. R. McMillan, J. Phys. Chem., 1966, 70, 2709.
W. A. Noyes, in Organic Syntheses, ed. A. H. Blatt, Wiley, New
York, 1943, vol. 2, pp. 108–109.
The authors would like to acknowledge the NERC and the EU
for funding under the UTLS thematic programme and UTO-
PIHAN-ACT project (EVK2-CT2001-00099), respectively.
39 J. Heicklen, Adv. Photochem., 1988, 14, 177.
4
0
J. G. Calvert and J. N. Pitts, Jr, Photochemistry, J. Wiley and
Sons, New York, 1966, pp. 452–455.
References
4
1
M. I. Christie, C. Gillbert and M. Voisey, J. Chem. Soc., 1964,
3147–3155.
1
2
3
R. P. Wayne, Chemistry of Atmospheres, Oxford University Press,
Oxford, 2000.
42 S. Jaffe and E. Wan, Environ. Sci. Technol., 1974, 8, 1024–1025.
43 F. Jensen, Introduction to Computational Chemistry, Wiley, New
York, 1999, pp. 364–368.
´
44 R. Mereau, M. T. Rayez, F. Caralp and J. C. Rayez, Phys. Chem.
Chem. Phys., 2000, 2, 1919–1928.
45 A. C. Baldwin, J. R. Barker, D. M. Golden and D. G. Hendry, J.
Phys. Chem., 1977, 81, 2483.
46 K. Y. Choo and S. W. Benson, Int. J. Chem. Kinet., 1981, 13, 13.
47 M. Weber and H. Fischer, J. Am. Chem. Soc., 1999, 121, 7381.
48 H. Somnitz and R. Zellner, Phys. Chem. Chem. Phys., 2000, 2,
4319–4325.
B. Finlayson-Pitts and J. N. Pitts, Jr, Chemistry of the Upper and
Lower Atmosphere, Academic Press, New York, 1999.
H. Singh, Y. Chen, A. Tabazadeh, Y. Fukui, I. Bey, R. Yantosca,
D. Jacob, F. Arnold, K. Wohlfrom, E. Atlas, F. Flocke, D. Blake,
N. Blake, B. Heikes, J. Snow, R. Talbot, G. Gregory, G. Sachse,
S. Vay and Y. Kondo, J. Geophys. Res., 2000, 105, 3795–3805.
PORG, Ozone in the UK, Fourth Report of the Photooxidants
Review Group, 1997, Department of the Environment, Transport
and Regions.
4
5
IPCC, Aviation and the Global Atmosphere, Intergovernmental
Panel on Climate Change, 1999, Cambridge University Press,
Cambridge.
49 NIST, Chemistry WebBook, NIST Standard Reference Database
No. 69, March 2003 Release.
2
190
P h y s . C h e m . C h e m . P h y s . , 2 0 0 5 , 7 , 2 1 8 2 – 2 1 9 0
T h i s j o u r n a l i s & T h e O w n e r S o c i e t i e s 2 0 0 5