A Short and Practical Synthesis of Oseltamivir
Phosphate (Tamiflu) from (-)-Shikimic Acid
in order to develop an efficient and useful synthetic route that
is anticipated to be suitable as an industrial process. The
chemists at Gilead Sciences, Inc. and F. Hoffman-La Roche
†
6
a,c
Ltd. have developed a practical synthesis
that is currently
Liang-Deng Nie, Xiao-Xin Shi,* Kwang Hyok Ko, and
Wei-Dong Lu
used for the manufacture of oseltamivir phosphate. Among all
the reported synthetic methods, La Roche’s method seems to
have been the best one for industrial large-scale preparation of
Tamiflu until now. However, there are still some drawbacks
associated with this method, for example, the long synthetic
route and the relatively low total yield. Therefore, a better
industrial synthetic method remains highly desirable.
Department of Pharmaceutical Engineering, School of
Pharmacy, East China UniVersity of Science and
Technology, P.O. Box 363, 130 Mei-Long Road, Shanghai
2
00237, People’s Republic of China
Recently, we were engaged in the synthesis of oseltamivir
phosphate and have just disclosed a novel 13-step synthesis
ReceiVed February 01, 2009
7
starting from (-)-shikimic acid. Although this synthesis has
some merits such as the high overall yield, inexpensive reagents,
mildness of the reaction conditions, and ease of manipulation
of every step, the long synthetic route will significantly retard
its use in the large-scale preparation of oseltamivir phosphate.
After an extensive study, we have exploited a much short and
practical synthesis of oseltamivir phosphate from (-)-shikimic
acid. Herein, we would like to report the details.
As depicted in Scheme 2, our synthesis started from (-)-
shikimic acid, which can be obtained by extraction from Illicium
8
Verum (also referred to as Chinese star anise) or other natural
Oseltamivir phosphate (1) was synthesized from (-)-shikimic
acid through a short and practical synthetic route via eight
steps in 47% overall yield. In addition, the highly regiose-
lective and stereoselective nucleophilic replacement of OMs
9
resources, or by fermentation using genetically modified
10
Escherichia coli. To our delight, (-)-shikimic acid is abundant
(6) (a) Kim, C. U.; Lew, W.; Williams, M. A.; Liu, H.; Zhang, L.;
by the N
3
group in the third and seventh steps has been
Swaminathan, S.; Bischofberger, N.; Chen, M. S.; Mendel, D. B.; Tai, C. Y.;
Laver, W. G.; Stevens, R. C. J. Am. Chem. Soc. 1997, 119, 681. (b) Rohloff,
J. C.; Kent, K. M.; Postich, M. J.; Becker, M. W.; Chapman, H. H.; Kelly, D. E.;
Lew, W.; Louie, M. S.; McGee, L. R.; Prisbe, E. J.; Schultze, L. M.; Yu, R. H.;
Zhang, L. J. Org. Chem. 1998, 63, 4545. (c) Federspiel, M.; Fisher, R.; Henning,
M.; Mair, H. J.; Oberhauser, T.; Rimmler, G.; Albiez, T.; Bruhin, J.; Estermann,
H.; Gandert, C.; Gockel, V.; Gotzo, S.; Hoffmann, U.; Huber, G.; Janatsch, G.;
Lauper, S.; Rockel-Stabler, O.; Trussardi, R.; Zwahlen, A. G. Org. Process Res.
DeV. 1999, 3, 266. (d) Karpf, M.; Trussardi, R. J. Org. Chem. 2001, 66, 2044.
studied in detail, and the reaction conditions were optimized.
Oseltamivir phosphate (Tamiflu, 1 in Scheme 1) has recently
attracted considerable attention because it was approved as the
only orally available drug for both prophylaxis and treatment
of human influenza and H5N1 avian flu. The historic record
showed that the human influenza and the H5N1 avian flu have
(
e) Harrington, P. J.; Brown, J. D.; Foderaro, T.; Hughes, R. C. Org. Process
Res. DeV. 2004, 8, 86. (f) Cong, X.; Yao, Z.-J. J. Org. Chem. 2006, 71, 5365.
g) Shie, J.-J.; Fang, J.-M. ; Wang, S.-Y.; Tasi, K.-C.; Cheng, Y.-S. E.; Yang,
A.-S.; Hsiao, S.-C.; Su, C.-Y.; Wong, C.-H. J. Am. Chem. Soc. 2007, 129, 11892.
h) Yeung, Y.-Y.; Hong, S.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 6310. (i)
Kipassa, N. T.; Okamura, H.; Kina, K.; Hamada, T.; Iwagawa, T. Org. Lett.
008, 10, 815. (j) Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. Angew.
1
2
(
3
killed numerous people in many countries, and they will surely
(
continue to threaten human health in the future. To protect
people from the attack of pandemic human influenza or H5N1
avian flu, it is recommended that oseltamivir phosphate (Tamiflu,
2
Chem., Int. Ed. 2007, 46, 5734. (k) Yamatsugu, K.; Kamijo, S.; Suto, Y.; Kanai,
M.; Shibasaki, M. Tetrahedron Lett. 2007, 48, 1403. (l) Mita, T.; Fukuda, N.;
Roca, F. X.; Kanai, M.; Shibasaki, M. Org. Lett. 2007, 9, 259. (m) Fukuta, Y.;
Mita, T.; Fukuda, N.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128,
1) should be manufactured and stocked in every country all over
4
,3a
the world.
6
312. (n) Bromfield, K. M.; Graden, H.; Hagberg, D. P.; Olsson, T.; Kann, N.
5
,6
Extensive efforts have been made by synthetic chemists
to tackle the problems in the synthesis of oseltamivir phosphate
Chem. Commun. 2007, 3183. (o) Zutter, U.; Iding, H.; Spurr, P.; Wirz, B. J.
Org. Chem. 2008, 73, 4895. (p) Shie, J.-J.; Fang, J.-M.; Wong, C.-H. Angew.
Chem., Int. Ed. 2008, 47, 5788. (q) Matveenko, M.; Willis, A. C.; Banwell,
M. G. Tetrahedron Lett. 2008, 49, 7018. (r) Trost, B. M.; Zhang, T. Angew.
Chem., Int. Ed. 2008, 47, 3759. (s) Ishikawa, H.; Suzuki, T.; Hayashi, Y. Angew.
Chem., Int. Ed. 2009, 48, 1304. (t) Yamatsugu, K.; Yin, L.; Kamijo, S.; Kimura,
Y.; Kanai, M.; Shibasaki, M. Angew. Chem., Int. Ed. 2009, 48, 1070.
(7) Nie, L.-D.; Shi, X.-X. Tetrahedron: Asymmetry 2009, 20, 124.
(8) He, X.-H.; Liu, L.; Liu, X.-G.; Liu, Z.-P.; Zhao, G.-M.; Li, H.-Y. Nat.
Prod. Res. DeV. (in Chinese) 2008, 20, 914.
(9) (a) Enrich, L. B.; Scheuermann, M. L.; Mohadjer, A.; Matthias, K. R.;
Eller, C. F.; Newman, M. S.; Fujinaka, M.; Poon, T. Tetrahedron Lett. 2008,
49, 2503. (b) Sui, R. Chem. Eng. Technol. 2008, 31, 469.
(10) (a) Draths, K. M.; Knop, D. R.; Frost, J. W. J. Am. Chem. Soc. 1999,
121, 1603. (b) Knop, D. R.; Draths, K. M.; Chandran, S. S.; Barker, J. L.; von
Daeniken, R.; Weber, W.; Frost, J. W. J. Am. Chem. Soc. 2001, 123, 10173. (c)
Chandran, S. S.; Yi, J.; von Daeniken, R.; Weber, W.; Frost, J. W. Biotechnol.
Prog. 2003, 19, 808. (d) Pittard, A. J. In Escherichia coli and Salmonella:
Cellular and Molecular Biology; Neidhardt, F. C., Ed.; ASM Press: Washington,
DC, 1996; Chapter 28.
†
Dedicated to Professor Li-Xin Dai (Shanghai Institute of Organic Chemistry)
on the occasion of his 85th birthday.
(
1) (a) Kim, C. U.; Lew, W.; Williams, M. A.; Wu, H.; Zhang, L.; Chen,
X.; Escarpe, P. A.; Mendel, D. B.; Laver, W. G.; Stevens, R. C. J. Med. Chem.
998, 41, 2451. (b) Schmidt, A. C. Drugs 2004, 64, 2031.
1
(
2) (a) Moscona, A. New Engl. J. Med. 2005, 353, 1363. (b) Russell, R. J.;
Haire, L. F.; Stevens, D. J.; Collins, P. J.; Lin, Y. P.; Blackburn, G. M.; Hay,
A. J.; Gamblin, S. J.; Skehel, J. J. Nature (London) 2006, 443, 45.
(
3) (a) Farina, V.; Brown, J. D. Angew. Chem., Int. Ed. 2006, 45, 7330. (b)
Taubenberger, J. K.; Reid, A. H.; Fanning, T. G. Virology 2000, 274, 241.
(
(
4) Laver, G.; Garman, E. Science 2001, 293, 1776.
5) For reviews, please see:(a) Shibasaki, M.; Kanai, M. Eur. J. Org. Chem.
2
008, 1839. (b) Abrecht, S.; Harrington, P.; Iding, H.; Karpf, M.; Trussardi, R.;
Wirz, B.; Zutter, U. Chimia 2004, 58, 621. (c) Abrecht, S.; Federspiel, M. C.;
Estermann, H.; Fisher, R.; Karpf, M.; Mair, H.-J.; Oberhauser, T.; Rimmler, G.;
Trussardi, R.; Zutter, U. Chimia 2007, 61, 93.
3
970 J. Org. Chem. 2009, 74, 3970–3973
10.1021/jo900218k CCC: $40.75 2009 American Chemical Society
Published on Web 04/14/2009