Page 5 of 5
Journal of the American Chemical Society
fluorescence signal changes with a camera mounted on the
We are grateful for support from the Helmholtz Alliance
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
ICEMED (AM, GGW), the European Research Council under
grant agreements ERCꢀStG: 311552 (GGW), the Priority proꢀ
gram SP1665 of the German Research Foundation (DFG), as
well as the Laura Bassi Award of TUM (SR), grant agreements
CRC 1123 (Z1), and Reinhard Koselleck project (NT 3/9ꢀ1).
opposite side from the photacoustic sensor array. As displayed
in Figure 4a, the brain of the CaSPAꢀinjected fish showed a
strong fluorescent signal (excitation at 550 nm) over 7 minutes
of baseline observation, whereas no fluorescent signal was
detected from the brain of the control fish. When we applied a
2
0
low concentration of ethanol (1% in fish water
), a
neurostimulant with fast cellular diffusion, to both agarꢀ
embedded fish, we observed a signal decay and increased signal
fluctuations (Figure 4b). Subsequently we superfused the potent
■
(1)
(2)
(3)
(4)
REFERENCES
Berridge, M. J.; Bootman, M. D.; Roderick, H. L. Nat Rev
Mol Cell Biol 2003, 4 (7), 517.
Taruttis, A.; Ntziachristos, V. Nature Photon 2015, 9 (4),
2
1
neurostimulant pentylenetetrazole (PTZ, 5 mM in fish water
)
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
+
which is commonly used to induce strong Ca signaling in the
brain and observed an overall fluorescent signal decrease in the
brain region of the CaSPA injected fish. Throughout the
experiment, the autofluorescence signals from the swim
bladders of both fish observed at shorter excitation wavelenghts
remained constant (Figure S13b,b’b’’). When we then analyzed
the simultaneoulsy acquired photoacoustic data, we located the
CaSPA_550 spectrum (Fig. S13c) at the location with strong
fluorescence signal in the CaSPAꢀinjected fish (Fig. 4c, magenta
2
19.
Gottschalk, S.; Fehm, T. F.; DeánꢀBen, X. L.; Razansky, D.
J Cereb Blood Flow Metab 2015.
Li Smerin, Y.; Levitan, E. S.; Johnson, J. W. The Journal of
Physiology 2001, 533 (3), 729.
(5)
Kalappa, B. I.; Anderson, C. T.; Goldberg, J. M.; Lippard,
S. J.; Tzounopoulos, T. Proceedings of the National Acadꢀ
emy of Sciences 2015, 201512296.
(6)
(7)
Li, Y. V. Endocrine 2014, 45 (2), 178.
Wilms, C. D.; Eilers, J. J Microsc 2007, 225 (3), 209.
Durham, A. C. H.; Walton, J. M. Cell Calcium 1983, 4 (1),
47.
(8)
overlay). Over time, we observed
a decrease of the
photoacoustic signal peak around 550 nm during the stimulation
with EtOH which slightly increased before further signal
reduction after addition of PTZ (Figure 4d). The brain of the
control fish generated only low signal around 550 nm and signal
amplitudes obtained from the melanin containing eyes of both
fish remained constant over time (Fig. 13d,d’).
(
9)
Thomas, M. V. Biophys. J. 1979, 25 (3), 541.
Cooley, E. J.; Kruizinga, P.; Branch, D. W.; Emelianov, S.
Achilefu, S., Raghavachari, R., Eds.; SPIE, 2010; Vol.
(10)
7
576, p 75761J.
(11)
12)
Dana, N.; Fowler, R. A.; Allen, A.; Zoldan, J.; Suggs, L.;
Emelianov, S. Laser Phys. Lett. 2016, 1.
Baylor, S. M.; Hollingworth, S.; Hui, C. S.; QuintaꢀFerreira,
M. E. The Journal of Physiology 1986, 377 (1), 89.
Li, H.; Zhang, P.; Smaga, L. P.; Hoffman, R. A.; Chan, J. J
Am Chem Soc 2015, 137 (50), 15628.
Grynkiewicz, G.; Poenie, M.; Tsien, R. Y. Journal of
Biological Chemistry 1985, 260 (6), 3440.
Valeur, B. Coordination Chemistry Reviews 2000, 205 (1),
3.
Oheim, M.; van 't Hoff, M.; Feltz, A.; Zamaleeva, A.;
Mallet, J.ꢀM.; Collot, M. Biochim. Biophys. Acta 2014,
1843 (10), 2284.
(
■
CONCLUSIONS
(13)
(14)
These experiments jointly demonstrate that the metallochromic
2+
Ca ꢀsensor for photoacoustics (CaSPA_550) which we
introduce here is the first probe that possesses the necessary
photophysical and biochemical properties to enable imaging of
(
15)
16)
2+
intracellular Ca
transients with photoacoustics in cells,
(
organotypic tissue culture and in vivo in larval zebrafish brain.
The semiꢀcyanine scaffold we chose may serve as a versatile
platform to generate metallochromic sensors selective for other
biologically relevant metals or small analytes to enable
molecular and dynamic photoacoustic imaging with photoꢀ
scatteringꢀindependent resolution
(
17)
Tsien, R. Y. Nature 1981, 290 (5806), 527.
Seeger, M.; Karlas, A.; Soliman, D.; Pelisek, J.; Ntziachrisꢀ
tos, V. Photoacoustics 2016.
Soliman, D.; Tserevelakis, G. J.; Omar, M.; Ntziachristos,
V. Sci Rep 2015, 5, 12902.
Ikeda, H.; Delargy, A. H.; Yokogawa, T.; Urban, J. M.;
Burgess, H. A.; Ono, F. Plos One 2013, 8 (5), e63318.
Randlett, O.; Wee, C. L.; Naumann, E. A.; Nnaemeka, O.;
Schoppik, D.; Fitzgerald, J. E.; Portugues, R.; Lacoste, A.
M. B.; Riegler, C.; Engert, F.; Schier, A. F. Nat. Methods
2015, 12 (11), 1039.
(18)
19)
(20)
21)
(
■
ASSOCIATED CONTENT
Supporting Information.
(
Supporting Tables and Figures, as well as Experimental Methꢀ
ods. This material is available free of charge via the Internet at
http://pubs.acs.org.
■
AUTHOR INFORMATION
Keywords: Imaging agents • Photoacoustic Imaging • Optoaꢀ
coustic Imaging • metallochromic agent • calcium imaging
Corresponding Author
ORCID
Gil Gregor Westmeyer: 0000ꢀ0001ꢀ7224ꢀ8919
Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGEMENTS
We thank Dr. Robert Pal (Durham University) for relative QY
measurements, Dr. Andreas Bauer (Technical University of
Munich) for absolute QY measurements, and Christian Hundꢀ
shammer for help with HPLC. We thank Prof. Dr. Oliver Pletꢀ
tenburg for helpful comments on the manuscript.
4
ACS Paragon Plus Environment