Recovery and recycling of [C
systems
4
mim][CH
3
COO]/Li salt solvent
3 F. T. Moutos, L. E. Freed and F. Guilak, Nat. Mater., 2007, 6, 162.
4
F. Hermanutz, F. G a¨ hr, E. Uerdingen, F. Meister and B. Kosan,
Macromol. Symp., 2008, 262, 23.
5
6
7
C. L. McCormick and T. R. Dawsey, Macromolecules, 1990, 23, 3606.
S. Fischer, W. Voigt and K. Fischer, Cellulose, 1999, 6, 213.
T. Heinze and T. Liebert, Prog. Polym. Sci., 2001, 26, 1689.
After the complete dissolution of cellulose in the
mim][CH COO]/Li salt solvent systems, cellulose can
be regenerated and the [C mim][CH COO]/Li salt solvent
mixtures can be recovered by addition of water or ethanol. In a
typical recovery trial, 2.0 g of [C mim][CH COO]/LiCl solvent
and 5.0 wt% cellulose solution were used. The cellulose solution
was poured into a 100 mL beaker containing 10 mL of water.
The beaker was sealed with preservative film and the mixture
was stirred for 30 min at ambient temperature. The precipitated
cellulose was separated by filtration through a ceramic funnel
with Nylon filter paper on a B u¨ chner flask under vacuum.
The cellulose was washed four times to ensure that all the
[C
4
3
4
3
8 Z. Wang, T. Yokoyama, H. M. Chang and Y. Matsumoto, J. Agric.
Food Chem., 2009, 57, 6167.
T. Welton, Chem. Rev., 1999, 99, 2071.
9
4
3
1
1
0 P. Wasserscheid and W. Keim, Angew. Chem., Int. Ed., 2000, 39, 3772.
1 J. Dupont, R. F. de Souza and P. A. Z. Suarez, Chem. Rev., 2002,
102, 3667.
2 R. P. Swatloski, S. K. Spear, D. John, J. D. Holbrey and R. D. Rogers,
J. Am. Chem. Soc., 2002, 124, 4974.
3 J. S. Moulthrop, R. P. Swatloski, G. Moyna and R. D. Rogers, Chem.
Commun., 2005, 1557.
14 R. C. Remsing, R. P. Swatloski, R. D. Rogers and G. Moyna, Chem.
Commun., 2006, 1271.
1
1
1
5 H. Zhang, J. Wu, J. Zhang and J. S. He, Macromolecules, 2005, 38,
272.
16 Y. Cao, J. Wu, J. Zhang, H. Q. Li, Y. Zhang and J. S. He, Chem.
[C
4
mim][CH COO]/LiCl solvent had been washed out. The
3
8
filtrates were combined in a round bottomed flask, and water
was removed by rotatory evaporation under reduced pressure.
Eng. J., 2009, 147, 13.
1
1
1
2
7 Y. Fukaya, A. Sugimoto and H. Ohno, Biomacromolecules, 2006, 7,
The resulting [C
dried under vacuum for 24 h at 70 C, and then could be used in
the next dissolution process. In each dissolution–recovery cycle,
4
mim][CH
3
COO]/LiCl solvent mixture was
3
295.
◦
8 Y. Fukaya, K. Hayashi, M. Wadab and H. Ohno, Green Chem., 2008,
10, 44.
9 J. Vitz, T. Erdmenger, C. Haensch and U. S. Schubert, Green Chem.,
the recovery percentage of [C
4
mim][CH COO]/LiCl solvent
3
2
009, 11, 417.
is approximately 99.2 wt%, and the dissolving capacity of the
recovered solvent for cellulose is equivalent to the original
solvent.
0 D. A. Fort, R. C. Remsing, R. P. Swatloski, P. Moyna, G. Moyna
and R. D. Rogers, Green Chem., 2007, 9, 63.
21 I. Kilpel a¨ inen, H. Xie, A. King, M. Granstrom, S. Heikkinen and
D. S. Argyropoulos, J. Agric. Food Chem., 2007, 55, 9142.
2
2
2 M. Zavrel, D. Bross, M. Funke, J. B u¨ chs and A. C. Spiess, Bioresour.
Technol., 2009, 100, 2580.
Characterization of the regenerated cellulose
3 N. Sun, M. Rahman, Y. Qin, M. L. Maxim, H. Rod r´ iguez and R. D.
Rogers, Green Chem., 2009, 11, 646.
Fourier transform infrared (FTIR) spectra were recorded on
a Necolet Nexus spectrometer with KBr pellets. A total of 16
scans were taken for each sample at a resolution of 2 cm .
Scanning electron micrographs were taken with a JEOL JSM-
24 S. D. Zhu, J. Chem. Technol. Biotechnol., 2008, 83, 777.
-
1
25 A. Oehlke, K. Hofmann and S. Spange, New J. Chem., 2006, 30,
5
33.
2
6 C. Chiappe and D. J. Pieraccini, J. Phys. Org. Chem., 2005, 18, 275.
27 J. G. Huddlestone, G. A. Broker, H. D. Willauer and R. D. Rogers,
6
390LV scanning electron microscope. The regenerated cellulose
films in the dry state were frozen in liquid nitrogen, immediately
snapped, and then dried under vacuum. The free surface (side in
direct contact with the coagulant) and the fracture surface of the
films were sputtered with gold, and then photographed. TGA
was carried out with a NETZSCH STA 449 C thermal analyser
using alumina crucibles. The sample mass was ca. 10–15 mg per
measurement. The measurements were carried out under flowing
ACS Symp. Ser., 2002, 818, 270.
2
2
3
8 R. Lungwitz and S. Spange, New J. Chem., 2008, 32, 392.
9 E. Brendler, S. Fischer and H. Leipner, Cellulose, 2001, 8, 283.
0 B. Hinterstoisser, M. Akerholm and L. Salm e´ n, Biomacromolecules,
2003, 4, 1232.
˚
3
1 Y. Sun, L. Lin, C. S. Pang, H. B. Deng, H. Peng, J. Z. Li, B. H. He
and S. J. Liu, Energy Fuels, 2007, 21, 2386.
3
2 B. Morgensrern, H. W. Kammer and W. Berger, Acta Polym., 1992,
4
3, 356.
◦
-1
N
2
at a heating rate of 10 C min . The viscosity-average degree
33 C. L. McCormick, P. A. Callais and B. H. Hutchinson Jr., Macro-
molecules, 1985, 18, 2394.
of polymerization (DP) for the original and regenerated cellulose
materials was determined by using an Ubbelohde viscometer in
cupriethylenediamine hydroxide solutions.
3
4 D. Ishii, D. Tatsumi and T. Matsumoto, Biomacromolecules, 2003, 4,
238.
35 L. N. Zhang, D. Ruan and J. P. Zhou, Ind. Eng. Chem. Res., 2001,
0, 5923.
1
4
3
3
3
6 L. N. Zhang, D. Ruan and S. J. Gao, J. Polym. Sci., Part B: Polym.
Phys., 2002, 40, 1521.
7 H. G. Higgins, C. M. Stewart and K. J. Harrington, J. Polym. Sci.,
1961, 51, 59.
8 S. M. Zhou, K. Tashiro, T. Hongo, H. Shirataki, C. Yamane and T.
Ii, Macromolecules, 2001, 34, 1274.
9 Y. Kataoka and T. Kondo, Macromolecules, 1998, 31, 760.
0 L. J. Qu, Y. Zhang, J. Q. Wang and D. L. Chi, J. QingDao, University,
2008, 23, 44.
Acknowledgements
This work was supported financially by the National High
Technology Research and Development Program (863 Program,
No.2007AA05Z454), the National Natural Science Foundation
of China (No.20873036) and the Innovation Scientists and
Technicians Troop Construction Projects of Henan Province
3
4
4
4
4
1 A. Potthast, T. Rosenau, H. Sixta and P. Kosmaa, Tetrahedron Lett.,
(
No.084200510015).
2
002, 43, 7757.
2 P. Bonhote, D. Ana-Paula, N. Papageorgiou, K. Kalyanasundaram
and M. Gratzel, Inorg. Chem., 1996, 35, 1168.
3 J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser and
R. D. Rogers, Chem. Commun., 1998, 1765.
References
1
D. Klemm, B. Heublein, H. P. Fink and A. Bohn, Angew. Chem., Int.
Ed., 2005, 44, 3358.
44 K. Fukumoto, M. Yoshizawa and H. Ohno, J. Am. Chem. Soc., 2005,
2
K. J. Edgar, C. M. Buchanan, J. S. Debenham, P. A. Rundquist, B. D.
Seiler, M. C. Shelton and D. Tindall, Prog. Polym. Sci., 2001, 26,
127, 2398.
45 Q. B. Liu, M. H. A. Janssen, F. V. Rantwijk and R. A. Sheldon, Green
Chem., 2005, 7, 39.
1
605.
This journal is © The Royal Society of Chemistry 2010
Green Chem., 2010, 12, 268–275 | 275