Journal of the American Chemical Society
Communication
Figure 3. Photographs showing selective depolymerization at the solid−liquid interface using solvent-cast disks of polymers 5−7. All photographs
show a top-down view of a glass crystallization dish that contains a plastic disk immersed in a solution of acetonitrile that contains 0.23 M TBAF.
The disk in (a) comprises polymer 5, in (b) polymer 6, and in (c) polymer 7. Similar results are available in Figure S5 for disks made using polymers
8−10 that respond to Pd(0).
Similar selectivity in the solid-state depolymerization results
Aizenberg, J. Chem. Soc. Rev. 2013, 42, 7072−7085. (c) Esser-Kahn, A.
P.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S.
Macromolecules 2011, 44, 5539−5553. (d) Theato, P.; Sumerlin, B.
S.; O’Reilly, R. K.; Epps, T. H., III. Chem. Soc. Rev. 2013, 42, 7055−
were obtained for disks made from polymers 8−10 that
respond to Pd(0) (Figure S5), showing that inclusion of
detection units on each repeating unit of the poly(benzyl
ethers) indeed accelerates the rate of molecular detection
events at the solid−liquid interfaces of macroscopic poly(benzyl
ether)-based materials.
The combination of these capabilitiesi.e., tunable specific-
ity, signal amplification, stimuli responses in rigid plastics, and
rapid responses at solid−liquid interfacesallows us to
envisage applications of such materials. Example applications
may range from plastics that easily alter their size, shape,
structure, surface properties, or function to plastics that report
their exposure to a specific analyte (via the purple color of 11),
to plastics that form the basis for smart capsules.
7
056.
2) Reviews: (a) Phillips, S. T.; DiLauro, A. M. ACS Macro Lett.
(
2
014, 3, 298−304. (b) Phillips, S. T.; Robbins, J. S.; DiLauro, A. M.;
Olah, M. G. J. Appl. Polym. Sci. 2014, 131, 40992. (c) Peterson, G. I.;
Larsen, M. B.; Boydston, A. J. Macromolecules 2012, 45, 7317−7328.
(d) Wang, H.-C.; Zhang, Y.; Possanza, C. M.; Zimmerman, S. C.;
Cheng, J.; Moore, J. S.; Harris, K.; Katz, J. S. ACS Appl. Mater.
Interfaces 2015, 7, 6369−6382. Seminal publications on CDr
polymers: (e) Sagi, A.; Weinstain, R.; Karton, N.; Shabat, D. J. Am.
Chem. Soc. 2008, 130, 5434−5435. (f) Weinstain, R.; Sagi, A.; Karton,
N.; Shabat, D. Chem.Eur. J. 2008, 14, 6857−6861. (g) Weinstein, R.;
Baran, S. P.; Shabat, D. Bioconjugate Chem. 2009, 20, 1783−1791.
(
1
h) DeWit, M. A.; Gillies, E. R. J. Am. Chem. Soc. 2009, 131, 18327−
8334. (i) Esser-Kahn, A. P.; Sottos, N. R.; White, S. R.; Moore, J. S. J.
ASSOCIATED CONTENT
Supporting Information
■
Am. Chem. Soc. 2010, 132, 10266−10268. Recent CD polymers that
r
*
S
are not covered in the reviews: (j) Fan, B.; Trant, J. F.; Wong, A. D.;
Gillies, E. R. J. Am. Chem. Soc. 2014, 136, 10116−10123. (k) DiLauro,
A. M.; Phillips, S. T. Polym. Chem. 2015, DOI: 10.1039/C5PY00190K.
(3) (a) DiLauro, A.; Robbins, J. S.; Phillips, S. T. Macromolecules
Procedures, figures, NMR spectra, and GPC chromatograms.
2
013, 46, 2963−2968. (b) DiLauro, A. M.; Abbaspourrad, A.; Weitz,
D. A.; Phillips, S. T. Macromolecules 2013, 46, 3309−3313.
c) DiLauro, A. M.; Zhang, H.; Baker, M. S.; Wong, F.; Sen, A.;
Phillips, S. T. Macromolecules 2013, 46, 7257−7265.
AUTHOR INFORMATION
(
5
6
7
(
4) Gillies, Almutairi, and Cheng used similar approaches for
Notes
degradable polymers that respond to applied signals, where each
detection event cleaves a polymer into two pieces. Thus, n − 1
detection events are required to cleave all bonds between repeating
units, where n refers to the number of repeating units in the polymer.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the Defense Threat Reduction
Agency (HDTRA1-13-1-0039) and the Penn State MRSEC
■
(5) (a) Soleimani, A.; Borecki, A.; Gillies, E. R. Polym. Chem. 2014, 5,
7
1
(
062−7071. (b) Mejia, J. S.; Gillies, E. R. Polym. Chem. 2013, 4,
969−1982.
(
DMR-0820404) (surface-accessible detection units), and by
the U.S. Army Research Office (W911NF-14-1-0232) (solid-
state depolymerization).
6) (a) de Gracia Lux, C.; Joshi-Barr, S.; Nguyen, T.; Mahmoud, E.;
Schopf, E.; Fomina, N.; Almutairi, A. J. Am. Chem. Soc. 2012, 134,
1
2
5758−15764. (b) de Gracia Lux, C.; Almutairi, A. ACS Macro Lett.
013, 2, 432−435. (c) Viger, M. L.; Grossman, M.; Fomina, N.;
REFERENCES
■
Almutairi, A. Adv. Mater. 2013, 25, 3733−3738. (d) Fomina, N.;
McFearin, C.; Sermsakdi, M.; Edigin, O.; Almutairi, A. J. Am. Chem.
Soc. 2010, 132, 9540−9542. (e) Fomina, N.; McFearin, C. L.;
(
1) (a) Capadona, J. R.; Shanmuganathan, K.; Tyler, D. J.; Rowan, S.
J.; Weder, C. Science 2008, 319, 1370−1374. (b) Grinthal, A.;
C
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX