Page 9 of 11
ACS Catalysis
11. Tsai, Y.-F.; Luo, W.-I.; Chang, J.-L.; Chang, C.-W.; Chuang, H.-
Hong, S.; Lee, Y. M.; Ray, K.; Nam, W. Dioxygen activation chemistry
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
by synthetic mononuclear nonheme iron, copper and chromium
complexes. Coord. Chem. Rev. 2017, 334, 25-42; Engelmann, X.;
Monte-Perez, I.; Ray, K. Oxidation reactions with bioinspired
mononuclear non-heme metal-oxo complexes. Angew. Chem. Int. Ed.
C.; Ramu, R.; Wei, G.-T.; Zen, J.-M.; Yu, S. S.-F. Electrochemical
hydroxylation of C3–C12 n-alkanes by recombinant alkane
hydroxylase (AlkB) and rubredoxin-2 (AlkG) from pseudomonas
putida GPo1. Sci. Rep. 2017, 7, 8369.
12. Mukherjee, M.; Dey, A. Electron transfer control of reductase
versus monooxygenase: Catalytic C−H bond hydroxylation and alkene
epoxidation by molecular oxygen. ACS Cent. Sci. 2019, 5, 671−682.
13. Bugnola, M.; Carmieli, R.; Neumann, R. Aerobic
2
016, 55, 7632-7649.
. Cutsail, G. E.; Banerjee, R.; Zhou, A.; Que, L.; Lipscomb, J. D.;
4
DeBeer, S. High-resolution extended X-ray absorption fine structure
analysis provides evidence for a longer Fe···Fe distance in the Q
intermediate of methane monooxygenase. J. Am. Chem. Soc. 2018
,
electrochemical oxygenation of light hydrocarbons. ACS Catal. 2018
8, 3232-3236.
,
1
40, 16807-16820.
5. (a) Puri, M.; Que, L. Toward the synthesis of more reactive S = 2
non-heme oxoiron(IV) complexes. Acc. Chem. Res. 2015, 48,
443−2452; (b) Nam, W. Synthetic mononuclear nonheme iron–
oxygen intermediates. Acc. Chem. Res. 2015, 48, 2415−2423; (c) Seo,
M. S.; Kim, N. H.; Cho, K.-B.; So, J. E.; Park, S. K.; Clemancey, M.;
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
14. Todea, A. M.; Merca, A.; Bögge, H.; Glaser, T.; Pigga, J. M.;
Langston, M. L.; Liu, K. T.; Prozorov, R.; Luban, M.; Schröder, C.;
III
VI
2
Casey, W. H.; Müller, A. Porous capsules {(M)M }12Fe 30 (M=Mo ,
5
VI
W ): Sphere surface supramolecular chemistry with 20 ammonium
ions, related solution properties, and tuning of magnetic exchange
interactions. Angew. Chem. Int. Ed. 2010, 49, 514–519.
́
Garcia-Serres, R.; Latour, J.-M.; Shaik, S.; Nam, W. A mononuclear
nonheme iron(iv)-oxo complex which is more reactive than
cytochrome P450 model compound I. Chem. Sci. 2011, 2, 1039−1045;
rd
15. Braslavsky, S. E. Glossary of terms used in photochemistry 3
edition. Pure Appl. Chem. 2007, 79, 293-465.
(
d) Biswas, A. N.; Puri, M.; Meier, K. K.; Oloo, W. N.; Rohde, G. T.;
16. Barats, D.; Leitus, G.; Popovitz-Biro, R.; Shimon, L. J. W.;
Neumann, R. A stable “end-on” iron(III)-peroxo complex in water
Bominaar, E. L.; Munck, E.; Que, L. Modeling TauD-J: A high-spin
̈
derived from
molecular oxygen. Angew. Chem. Int. Ed. 2008, 47, 9908–9912.
7. Chen, K.; Que, L. Stereospecific alkane hydroxylation by non-
a multi iron(II) substituted polyoxometalate and
nonheme oxoiron(IV) complex with high reactivity toward C–H
bonds. J. Am. Chem. Soc. 2015, 137, 2428−2431; (e) McDonald, A.
R.; Que, L. High-valent nonheme iron-oxo complexes: Synthesis,
structure, and spectroscopy. Coord. Chem. Rev. 2013, 257, 414– 428;
1
heme iron catalysts: Mechanistic evidence for an Fe=O active species.
J. Am. Chem. Soc. 2001, 123, 6327-63339.
6. (a) de Oliveira, F. T.; Chanda, A.; Banerjee, D.; Shan, X.; Mondal,
S.; Que, L.; Bominaar, E. L.; Münck, E.; Collins, T. J. Chemical and
18. Zhao, H.; Joseph, J.; Zhang, H.; Karoui, H.; Kayanaraman, B.
Synthesis and biochemical applications of a solid cyclic nitrone spin
trap: a relatively superior trap for detecting superoxide anions and
glutathiyl radicals. Free Radical Biol. Med. 2001, 31, 599-606.
19. Keszler, A.; Kayanaraman, B.; Hogg, N. Comparative
investigation of superoxide trapping by cyclic nitrone spin traps: the
use of singular value decomposition and multiple linear regression
analysis. Free Radical Biol. Med. 2003, 35, 1149-1157.
V
Spectroscopic Evidence for an Fe -Oxo Complex. Science 2007, 315,
835– 838; (b) Kwon, E.; Cho, K.-B.; Hong, S.; Nam, W. Mechanistic
insight into the hydroxylation of alkanes by a nonheme iron(V)–oxo
complex. Chem. Commun. 2014, 50, 5572– 5575; (c) Ghosh, M.;
Singh, K. K.; Panda, C.; Weitz, A.; Hendrich, M. P.; Collins, T. J.; Dhar,
V
B. B.; Sen Gupta, S. Formation of a Room Temperature Stable Fe (O)
Complex: Reactivity Toward Unactivated C–H Bonds. J. Am. Chem.
Soc. 2014, 136, 9524– 9527; (d) Collins, T. J.; Ryabov, A. D. Targeting
of High-Valent Iron-TAML Activators at Hydrocarbons and Beyond.
Chem. Rev. 2017, 117, 9140– 9162
20.
21. Holtmann, D.; Hollmann, F. The oxygen dilemma: A severe
challenge for the application of monooxygenases? ChemBioChem,
2016, 17, 1391-1398.
7. (a) Dantignana, V.; Serrano-Plana, J.; Draksharapu, A.; Magallón,
C.; Banerjee, S.; Fan, R.; Gamba, I. Guo, Y. Que, L. Jr.; Costas, M.;
Company, A. Spectroscopic and Reactivity Comparisons between
Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same
Ancillary Ligand. J. Am. Chem. Soc. 2019, 141, 15078-15091; (b) Fan,
R.; Serrano-Plana, J.; Oloo, W. N.; Draksharapu, A.; Delgado-Pinar, E.;
Company, A.; Martin-Diaconescu, V.; Borrell, M.; Lloret-Fillol, J.;
García-España, E.; Guo, Y.; Bominaar, E. L.; Que, L.; Costas, M.;
Münck, E. Spectroscopic and DFT characterization of a highly reactive
22. Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Heme
containing oxygenases. Chem. Rev. 1996, 96, 2841-2888.
23. (a) Rietjens, I. M. C. M.; Vervoort, J. A new hypthoses for the
mechanism of cytochrome-P450 dependent aerobic conversion of
hexahalogenated benzenes to pentaholgenated phenols. Chem. Res.
Toxicol. 1992, 5, 10–19. (b)Koerts, J.; Soffers, A. E. M. F.; Vervoort, J.;
De Jager, A.; Rietjens, I. M. C. M. Occurrence of the NIH Shift upon
the Cytochrome P450-Catalyzed in Vivo and in Vitro Aromatic Ring
Hydroxylation of Fluorobenzenes. Chem. Res. Toxicol. 1998, 11, 503–
512.
24. (a) Afanasiev, P.; Sorokin, A. B. μ-Nitrido Diiron Macrocyclic
Platform: Particular Structure for Particular Catalysis. Acc. Chem. Res.
2016, 49, 583–593; (b) Colomban, C.; Kudrik, E. V.; Afanasiev, P.;
Sorokin, A. B. Catalytic Defluorination of Perfluorinated Aromatics
under Oxidative Conditions Using N-Bridged Diiron Phthalocyanine.
J. Am. Chem. Soc. 2014, 136, 11321–11330.
25. Luo, Y.-R. Comprehensive Handbook of Chemical Bond
Energies, CRC Press, 2007, pp 1688.
26. Hackett, J. C.; Sanan, T. T.; Hadad, C. M. Oxidative
dehgaolgenation of perhalogenated benzenes by cycchrome P-450
compound. Biochemistry, 2007, 46, 5924-5940.
27. Seo, M. S.; In, J. H.; Kim, S. O.; Oh, N. Y.; Hong, J.; Kim, J.; Que,
L.; Nam, W. Direct evidence for oxygen-atom exchange between
nonheme oxoiron(IV) complexes and isotopocally lableled water.
Angew. Chem. Int. Ed. 2004, 43, 2417-2420.
V
nonheme Fe −oxo intermediate. J. Am. Chem. Soc. 2018, 140,
3916−3928; (c) Serrano-Plana, J.; Oloo, W. N.; Acosta-Rueda, L.;
Meier, K. K.; Verdejo, B.; García-España, E.; Basallote, M. G.; Münck,
E.; Que, L.; Company, A.; Costas, M. Trapping a Highly Reactive
Nonheme Iron Intermediate That Oxygenates Strong C-H Bonds with
Stereoretention. J. Am. Chem. Soc. 2015, 137, 15833– 15842.
8. Menage, S.; Galey, J.-B.; Hussler, G.; Seit, M.; Fontecave, M.
Aromatic Hydroxylation by H
Diiron(III) Complex. Angew. Chem. Int. Ed. 1996, 35, 2353-2355.
. (a) Creager, S. E.; Raybuck, S. A.; Murray, R. W. An efficient
2
O
2
and O
2
Catalyzed by a μ-Oxo
9
electrocatalytic model cytochrome P-450 epoxidation cycle. J. Am.
Chem. Soc. 1986, 108, 4225-4227; (b) Horwitz, C. P.; Creager, S. E.;
Murray, R. W. Electrocatalytic olefin epoxidation using manganese
Schiff-base complexes and dioxygen. Inorg. Chem. 1990, 29, 1006–
1
011.
1
0. Udit, A. K.; Hill, M. G.; Gray, H. B. Electrochemical generation
of a high-valent state of cytochrome P450. J. Inorg. Biochem. 2006
100, 519–523.
,
ACS Paragon Plus Environment