ChemCatChem
10.1002/cctc.201902243
COMMUNICATION
[
1]
(a) L. D. Barron in New Developments in Molecular Chirality.
Entry
NuR
Catalyst (mol%)
Yield[b]
ee[e] (%)
t(d)
Understanding Chemical Reactivity, Vol.
5 (Eds.: P. G. Mezey),
(%)
Springer, Dordrecht, 1991, pp. 1-55; (b) A. B. Buda, T. A. der Heyde, K.
Mislow, Angew. Chem. Int. Ed. Engl. 1992, 31, 989; (c) P. Cintas,
Angew. Chem. Int. Ed. 2007, 46, 4016; (d) G. Coquerel, Synthesis 2003,
1
2
3
4
5
6
7
8
H
2
O
O
3a(0.1)
3b(0.1)
3a(0.1)
3b(0.1)
3a(0.1)
3b(0.1)
3a(0.1)
3b(0.1)
5
57[c][g]
17[c][g]
15[d][h]
17[d][h]
5
5
7
7
6
6
1
1
2
003(9), 1468; (e) C. J. Wallentin, E. Orentas, E. Butkus, K. Wärnmark,
Synthesis 2009, 2009(5), 864; (f) M. Francl, Nature Chem. 2019, 11,
97; (g) A. F. Zahrt, S. E. Denmark, Tetrahedron, 2019, 75, 1841.
H2
31
> 99
> 99
10
5
PhSH
PhSH
[2)
(a) Carroll, F. A., Structure and Mechanism in Organic Chemistry, 2nd
Ed, Wiley, Hoboken, 2010, p. 337; (b) J. M. Hawkins, R. H. Grubbs, J.
Am. Chem. Soc. 1988, 110, 2821; (c) A. Ganosan, C. H. Heathcock,
Tetrahedron Lett. 1993, 34, 439; (d) D. G. Blackmond, Proc. Natl. Acad.
Sci. U.S.A 2004, 101, 5732; (e) P. A. Wender, D. Strand, J. Am. Chem.
Soc. 2009, 131, 7528; (f) R. S. Givens, M. Rubina, K. F. Stensrud, J.
Org. Chem. 2013, 78, 1709.
TMSCN
TMSCN
TMSCl
TMSCl
4
4
[c][f]
[c][f]
11
[
3]
(a) J. Halpern, B. M. Trost, Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
5
347; (b) Comprehensive Asymmetric Catalysis, Vol. I-III (Eds.; E. N.
> 99
> 99
4
6
[c][h]
[c][h]
Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Heidelberg, 1999; (c)
Asymmetric Organic Synthesis with Enzymes (Eds.: V. Gotor, I. Alfonso,
E. García-Urdiales), Wiley, Weinheim, 2008; (d) Chiral Reagents for
Asymmetric Synthesis (Eds.; L. A. Paquette), Wiley, Hoboken, 2003.
(a) R. M. Flügel, Chirality and Life: A Short Introduction to the Early
Phases of Chemical Evolution, Springer, Heidelberg Berlin, 2011; (b) G.
F. Joyce, G. M. Visser, C. A. A. Boeckel, J. H. van Boom, L. E. Orgel, J.
van Westrenen, Nature 1984, 310, 602; (c) J. Bailey, Acta Astronaut.
2000, 46, 627; (d) D. Fitz, H. Reiner, K. Plankensteiner, B. Michael
Rode, Curr. Chem. Biol. 2007, 1, 41; (e) M. Gleiser, J. Thorarinson, S. I.
Walker, Origins Life Evol. Biospheres 2008, 38, 499; (f) M. M. Green, V.
Jain, Origins Life Evol. Biosperes. 2009, 40, 111; (g) K. Michaeli, N.
Kantor-Uriel, R. Naaman, D. H. Waldeck, Chem. Soc. Rev. 2016, 45,
[
a] Reaction conditions: r.t, cyclohexene oxide (0.5 mmol), NuR (0.6 mmol). [b]
[4]
Determined by H NMR spectroscopy with 1,2,4,5-tetramethylbenzene as
1
internal standard. [c] Determined by GC. [d] Determined by HPLC. e] The
absolute configuration was determined by comparison with that reported in the
literature. [f] The major configuration is (S,R) [g] The major configuration is
(R,R). [h] The major configuration is (S,S).
6
478.
[
5]
(a) E. Flapan, When Topology Meets Chemistry: A Topological Look at
Molecular Chirality, Cambridge University Press, Cambridge, 2000; (b)
R. Root-Bernstein, HYLE 2003, 9, 33; (c) R. S. Forgan, J.-P. Sauvage,
J. F. Stoddart, Chem. Rev. 2011, 111, 5434; (d) R. Mannancherry, M.
Rickhaus, D. Häussinger, A. Prescimone, M. Mayor, Chem. Sci. 2018,
In summary, for the first time chiral bimetallic bis-salen catalysts,
based on the desymmetrization of meso-ligands containing two
enantiotopic coordination sites by the coordination of two
different metal ions, have been designed, synthesized and
evaluated in catalysis. The system was shown capable of
enantiotopic discrimination in asymmetric nucleophilic ring
opening of meso-epoxides with up to quantitative yields, and
with up to 76% ee. As such, the study touches upon how
seemingly small modifications that break the symmetry of a
meso-ligand can be used to induce substantial ee’s in the
products of catalytic reactions. Beyond synthetic considerations,
we envision that catalysts of the described type could find
applications as mechanistic probes: The two metal ions are
surrounded by complimentary chiral environments, thus the
enantiomeric outcome of a reaction should reflect the role of
each metal ion in the stereo-discriminating step. Finally, a
molecular equivalent to a structure that is chiral merely through
the presence of two different spheres at positions related by a
mirror plane is not without a certain aesthetic appeal (Figure 2,
bottom). Further investigation of this catalytic system in other
contexts as well as applications in synthesis are under way and
will be reported in due course.
9
, 5758.
[6]
(a) Asymmetric Catalysis on Industrial Scale: Challenges, Approaches
and Solutions (Eds.: H. U. Blaser, H.-J. Federsel), Wiley, Weinheim,
2
011; (b) R. Noyori, Asymmetric catalysis in organic synthesis, Wiley,
Weinheim, 1994.
[
7]
(a) S. G. Allenmark, Chromatographic Enantioseparation: Methods and
Applications, Ellis Horwood, Chichester, 1988; (b) T. E. Beesley, R. P.
W. Scott, Chiral chromatography, John Wiley & Sons, Chichester, 1998;
(c) A. Cavazzini, L. Pasti, A. Massi, N. Marchetti, F. Dondi, Anal. Chim.
Acta 2011, 706, 205; (d) C. Fernandes, Y. Z. Phyo, A. S. Silva, M. E.
Tiritan, A. Kijjoa, M. M. M. Pinto, Sep. Purif. Rev. 2018, 47, 89; (e) T. J.
Ward, K. D. Ward, Anal. Chem. 2010, 82, 4712.
[8]
(a) Y. Inoue, Chem. Rev. 1992, 92, 741; (b) H. Kagan, A. Moradpour, J.
F. Nicoud, G. Balavoine, G. Tsoucaris, J. Am. Chem. Soc. 1971, 93,
2
353; (c) W. L. Noorduin, A. A. C. Bode, M. van der Meijden, H.
Meekes, A. F. van Etteger, W. J. P. van Enckevort, P. C. M. Christianen,
B. Kaptein, R. M. Kellogg, T. Rasing, E. Vlieg, Nat. Chem. 2009, 1, 729;
(d) G. Tkachenko, E. Brasselet, Nat. Commun. 2014, 5, 3577.
[
[
9]
(a) B. Kahr, R. W. Gurney, Chem. Rev. 2001, 101, 893; (b) D. K.
Kondepudi, R. J. Kaufman, N. Singh, Science 1990, 250, 975; (c) I.
Weissbuch, M. Lahav, Chem. Rev. 2011, 111, 3236.
10] (a) V. A. Soloshonok, H. Ueki, M. Yasumoto, S. Mekala, J. S. Hirschi, D.
A. Singleton, J. Am. Chem. Soc. 2007, 129, 12112; (b) A. V.
Tarasevych, A. E. Sorochinsky, V. P. Kukhar, J.-C. Guillemin, Origins
Life Evol. Biospheres 2013, 43, 129; (c) A. V. Tarasevych, A. E.
Sorochinsky, V. P. Kukhar, J.-C. Guillemin, Chem. Commun. 2015, 51,
7
054.
[
11] (a) T. Kawasaki, T. Sasagawa, K. Shiozawa, M. Uchida, K. Suzuki, K.
Soai, Org. Lett. 2011, 13, 2361; (b) A. Lennartson, S. Olsson, J.
Sundberg, M. Håkansson, Angew. Chem. Int. Ed. 2009, 48, 3137; (c) K.
Mislow, Collect. Czech. Chem. Commun. 2003, 68, 849; (d) T. T. Mai,
M. Branca, D. Gori, R. Guillot, C. Kouklovsky, V. Alezra, Angew. Chem.
Int. Ed. 2012, 51, 4981; (e) S. Olsson, P. M. Björemark, T. Kokoli, J.
Sundberg, A. Lennartson, C. J. McKenzie, M. Håkansson, Chem. Eur. J.
Acknowledgements
We thank the Swedish Research Council, the Royal
Physiographic Society of Lund and the Crafoord foundation for
grants. We thank Chinese Scholarship Council for PhD
scholarship to Yutang Li. We thank the Crafoord foundation for
postdoc fellowships to Zeyun Xiao, Dayou Ma, and Emil
Lindbäck.
2
015, 21, 5211.
[12] (a) S. Sha, Y. Deng, M. P. Doyle, Top. Organomet. Chem. 2018, 62, 1;
b) Chiral Lewis Acids in Organic Synthesis (Eds.: J. Mlynarski), Wiley,
(
Weinhem, 2017.
[13] (a) L. E. Martinez, J. L. Leighton, D. H. Carsten, E. N . Jacobsen, J. Am.
Chem. Soc. 1995, 117, 5897: (b) Boronic Acids: Preparation and
Applications in Organic Synthesis, Medicine and Materials (Eds.: D. G.
Hall), Wiley-VCH, Weinheim, 2011. (c) G. Desimoni, G. Faita, K. A.
Jørgensen, Chem. Rev. 2006, 106, 3561; (d) J. M. Brunel, Chem. Rev.
2
005, 105, 857.
[14] (a) P. J. Walsh, A. E. Lurain, J. Balsells, Chem. Rev. 2003, 103, 3297;
b) C. M. Manna, A. Kaur, L. M. Yablon, F. Haeffner, B. Li, J. A. Byers,
Conflict of interest
(
J. Am. Chem. Soc. 2015, 137, 14232.
15] D.-Y. Ma, Z.-Y. Xiao, J. Etxabe, K. Wärnmark, ChemCatChem 2012, 4,
The authors declare no conflict of interest.
Keywords: pseudo-meso • bissalen • asymmetric ring opening
[
[
1
321.
16] (a) P. Gugger, S. O. Limmer, A. A. Watson, A. C. Willis, S. B. Wild,
Inorg. Chem. 1993, 32, 5692; (b) S. Lanza, F. Nicolò, G. Cafeo, H. A.
Rudbari, G. Bruno, Inorg. Chem. 2010, 49, 9236.
This article is protected by copyright. All rights reserved.