1
592
P. Molnár et al. / Tetrahedron: Asymmetry 19 (2008) 1587–1592
molecular complex formation, most likely stabilized by hydrogen
bonds. The enantiomeric mixtures were obtained over 60% ee for
the extracted (1S,2S)-1 and over 90% ee for the raffinate (1R,2R)-
TBDPM (25 m ꢁ 0.25 mm ꢁ 0.25
lm film with permethylated
b-cyclodextrin, Macherey & Nagel, No.: 21519/11) column. The
analysis was performed at isotherm conditions (130 °C), carrier
gas: hydrogen, head pressure: 12 psi, 1:50 split ratio, detector:
FID at 250 °C, injector temperature at 250 °C.
1
enantiomers. The resolution of trans-1,2-cyclohexanediol with
tartaric acid by SFE is a competitive technique with any already
published methods due to the following advantages:
Acknowledgements
ꢃ short overall process time (<6 h), including the sample prepara-
tion, the extraction with scCO
2
and the decomposition step;
The authors are grateful for the support of the Hungarian
Research Grant (OTKA K72861) and for the Marie Curie Fellowship
Programme (MEST-CT-2004 007767).
ꢃ the tartaric acid is a non-toxic, cheap and efficient resolving
agent that does not require any structural modifications before
use;
ꢃ the scCO
2
—as a green solvent—is a suitable media for the sepa-
ration of the uncomplexed enantiomers and diastereomeric
complexes;
References
1
.
.
Simándi, B.; Keszei, S.; Fogassy, E.; Sawinsky, J. J. Org. Chem. 1997, 62, 4390–
394.
Bauza, R.; Rios, A.; Valcarcel, M. Sep. Sci. Technol. 2004, 39, 459–478.
4
ꢃ organic solvent consumption is significantly reduced or can even
2
be avoided;
3. Kordikowski, A.; York, P.; Latham, D. J. Pharm. Sci. 1999, 88, 786–791.
4
5
.
.
Bauza, R.; Ríos, A.; Valcárcel, M. Anal. Chim. Acta 1999, 391, 253–256.
Keszei, S.; Simándi, B.; Székely, E.; Fogassy, E.; Sawinsky, J.; Kemény, S.
Tetrahedron: Asymmetry 1999, 10, 1275–1281.
ꢃ the tuning of the extraction parameters offers a simple way to
influence the ee values in the extracts and raffinates as well.
6
7
8
9
.
.
.
.
Koichiro, N.; Hajime, M.; Yasuhiro, S. J. Chem. Soc., Perkin Trans. 1 1991, 4, 957–
9
59.
Hayward, R. C.; Overton, C. H.; Whitham, G. H. J. Chem. Soc., Perkin Trans. 1
976, 22, 2413–2415.
We achieved the value of F = 0.6 as the maximum of the resolu-
tion efficiency in one equilibrium stage.
1
Naemura, K.; Takeuchi, S.; Hirose, K.; Tobe, Y.; Kaneda, T.; Sakata, Y. J. Chem.
Soc., Perkin Trans. 1 1995, 3, 213–219.
Charette, A. B.; Marcoux, J.-F. Tetrahedron Lett. 1993, 34, 7157–7160.
4
4
. Experimental
1
1
1
0. Kottsieper, K. W.; Kühner, U.; Stelzer, O. Tetrahedron: Asymmetry 2001, 12,
1159–1169.
1. Tiecco, M.; Testaferri, L.; Marini, F.; Sternativo, S.; Santi, C.; Bagnoli, L.;
Temperini, A. Tetrahedron: Asymmetry 2003, 14, 1095–1102.
2. Wojaczy n´ ska, E.; Skar z_ ewski, J. Tetrahedron: Asymmetry 2008, 19, 593–597.
.1. Materials
Racemic trans-1,2-cyclohexanediol 1, (2R,3R)-(+)-tartaric acid
(
2R,3R)-(+)-4 and (2S,3S)-(ꢀ)-tartaric acid (2S,3S)-(ꢀ)-4 were pur-
13. Groaning, M. D.; Rowe, B. J.; Spilling, C. D. Tetrahedron Lett. 1998, 39, 5485–
488.
4. Tanaka, M.; Oba, M.; Tamai, K.; Suemune, H. J. Org. Chem. 2001, 66, 2667–
673.
15. Leitão, M. L. P.; Eusébio, M. E.; Maria, T. M. R.; Redinha, J. S. J. Chem. Thermodyn.
002, 34, 557–568.
6. Matsumura, Y.; Maki, T.; Murakami, S.; Onomura, O. J. Am. Chem. Soc. 2003, 125,
052–2053.
5
chased from Sigma–Aldrich Corp., (Budapest), Hungary. Perfil
P250 as inert support (expanded and milled perlite for use as a fil-
tering aid, specific surface area is 2.89 m /g) was kindly given by
Baumit Co., (Budapest), Hungary. Carbon dioxide (99.5 w/w% pure)
is the product of Linde Ltd, (Budapest), Hungary. Ethanol, methanol
and trichloromethane were provided by Reanal Ltd, (Budapest),
Hungary.
1
TM
2
2
2
1
2
17. Maki, B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A. Org. Lett. 2007, 9, 371–
374.
18. Vedejs, E.; Daugulis, O.; Diver, S. T. J. Org. Chem. 1996, 61, 430–431.
19. Yamada, S.; Katsumata, H. J. Org. Chem. 1999, 64, 9365–9373.
20. Brunner, H.; Obermann, U.; Wimmer, P. Organometallics 1989, 8, 821–826.
21. Clarke, I. D.; Hodge, P. Chem. Commun. 1997, 15, 1395–1396.
22. Lainé, D.; Fujita, M.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 1999, 12, 1639–1645.
23. Chatterjee, A.; Sasikumar, M.; Joshi, N. N. Synth. Commun. 2007, 37, 1727–1733.
24. Baldassarre, F.; Bertoni, G.; Chiappe, C.; Marioni, F. J. Mol. Catal. B: Enzym. 2000,
11, 55–58.
4
.2. Methods
Racemic trans-1,2-cyclohexanediol 1 (1 g, 8.609 mmol) and
(
2R,3R)-(+)-tartaric acid (0.6463 g, 4.306 mmol) were dissolved
separately in 15 ml of abs. ethanol and were combined. Inert sup-
port, Perfil P250 was added (1.5 g) to the solution. The ethanol
then was evaporated at 40–50 °C in 30 mbar vacuum. The solid
sample was left to dry overnight at room temperature. The sample
was extracted the next day under different conditions (P = 10–
TM
25. Seemayer, R.; Schneider, M. P. J. Chem. Soc., Chem. Commun. 1991, 1, 49–50.
26. Bódai, V.; Orovecz, O.; Szakács, Gy.; Novák, L.; Poppe, L. Tetrahedron:
Asymmetry 2003, 14, 2605–2612.
27. Detry, J.; Rosenbaum, T.; Lütz, S.; Hahn, D.; Jaeger, K.-E.; Müller, M.; Eggert, T.
Appl. Microbiol. Biotechnol. 2006, 72, 1107–1116.
2
2
8. Sonderegger, O. J.; Bürgi, T.; Baiker, A. J. Catal. 2003, 215, 116–121.
9. Noda, H.; Sakai, K.; Murakami, H. Tetrahedron: Asymmetry 2002, 13, 2649–
2652.
2
0 MPa, T = 33–63 °C) with approx. 660 g CO
tions were performed with a laboratory scale supercritical unit.
The (1S,2S)-(+)-1 rich mixture was collected in the separator at
MPa and 40 °C. The raffinate was removed from the extractor
2
/g rac-1. The extrac-
4
0
3
3
0. Tan, B.; Luo, G.; Qi, X.; Wang, J. Sep. Purif. Technol. 2006, 49, 186–191.
1. Bálint, J.; Egri, G.; Kiss, V.; Gajáry, A.; Juvancz, Z.; Fogassy, E. Tetrahedron:
Asymmetry 2001, 12, 3435–3439.
4
and 40 ml of methanol was added to it, in order to dissolve the
remaining diastereomeric complexes. After 1 h of stirring, the inert
support was filtered and the methanol was evaporated at
32. Fujii, A.; Fujima, Y.; Harada, H.; Ikunaka, M.; Inoue, T.; Katoa, S.; Matsuyama, K.
Tetrahedron: Asymmetry 2001, 12, 3235–3240.
3
3
3. Han, Z.; Krishnamurthy, D.; Fang, Q. K.; Wald, A. S.; Senanayake, C. H.
Tetrahedron: Asymmetry 2003, 14, 3553–3556.
4. Kmecz, I.; Simándi, B.; Székely, E.; Lovász, J.; Fogassy, E. Chirality 2007, 19, 430–
433.
4
0-50 °C in 30 mbar vacuum. The complex was decomposed by a
saturated aqueous solution of Na CO (6 ml) during the stirring
for 15 min. The water then was evaporated from the residue at
0–80 °C in 30 mbar vacuum. The solid particles were crushed
2
3
3
3
5. Pope, W. J.; Peachey, S. J. J. Chem Soc. 1899, 75, 1066–1093.
6. Kassai, Cs.; Juvancz, Z.; Bálint, J.; Fogassy, E.; Kozma, D. Tetrahedron 2000, 56,
7
8
355–8359.
37. Székely, E.; Simándi, B.; Fogassy, E.; Kemény, S.; Kmecz, I. Chirality 2003, 15,
83–786.
and 20 ml of trichloromethane was added to it. After 30 min of
stirring, the sodium-tartrate salt was filtered out and the organic
phase was evaporated. The product obtained contains the
7
3
(
1R,2R)-(ꢀ)-1 in excess.
39. Brunner, G. Ber. Bunsen-Ges. Phys. Chem. 1984, 88, 887–891.
40. Székely, E.; Simándi, B.; Illés, R.; Molnár, P.; Gebefügi, I.; Kmecz, I.; Fogassy, E. J.
The enantiomeric excesses were determined by GC analysis
Supercrit. Fluids 2004, 31, 33–40.
with an Agilent 4890D chromatograph using Hydrodex-b-6-