pubs.acs.org/joc
oxidation potential compared with that of dihydropyri-
4
dines. In general, excess corrosive and strong oxidants, such
Photochemical Preparation of Pyrimidin-2(1H)-ones
by Rhenium(I) Complexes with Visible Light
5
as DDQ, HNO , TBHP/CuCl , CAN/NaHCO , Co(NO ) /
6
7
8
3
2
10
3
3 2
12
9
11
K S O , K S O /ultrasound, TBHP/PhI(OAc)2, PCC,
2
2
8
2 2 8
Qiang Liu, Ya-Nan Li, Hui-Hui Zhang, Bin Chen,
Chen-Ho Tung, and Li-Zhu Wu*
þ 13
and NO , are required. These methods suffer from the use
of toxic reagents and the safety profile, low yield of the
products, and difficulty in product isolation. Developing
a method that can be applied in a wide range of DHPMs
with high yields under mild conditions is highly desirable. In
this regard, a photochemical process holds special promise.
Key Laboratory of Photochemical Conversion and
Optoelectronic Materials, Technical Institute of Physics and
Chemistry, Chinese Academy of Sciences,
Beijing 100190, P. R. China
1
4
Memarian and co-workers recently found that direct irra-
diation of DHPMs with UV light in a CHCl solution
3
resulted in the formation of pyrimidin-2(1H)-ones with
excellent yields. This is the first photochemical example for
dehydrogenation of DHPMs. In this reaction, UV light was
used to directly excite DHPMs, and the resultant pyrimidin-
Received October 18, 2010
2(1H)-ones also display absorption in this region that may
cause secondary photochemical reactions.
In the present work, we report a photochemical protocol
for facile preparation of pyrimidin-2(1H)-ones with visible
light. Herein, rhenium(I) complex was selected as a photo-
sensitizer in view of its visible light absorption, long excited-
state lifetime, strong excited-state redox potential, and ther-
1
5,16
mal and photochemical stability.
complex has been exploited for CO reduction, there are
Although this kind of
1
6
2
With visible light irradiation (λ > 400 nm) of rhenium(I)
complexes (P1-P4), a photochemical conversion from
3
ones at room temperature has been achieved with good
few reports on the use of rhenium(I) tricarbonyl diimine
complexes in organic synthesis. As compared with well
1
developed ruthenium(II) or platinum(II)
7
3d,18,19
,4-dihydropyrimidin-2(1H)-ones to pyrimidin-2(1H)-
complexes,
the excited rhenium(I) complexes possess more powerful
redox potential. This unique feature prompted us to initiate
a study on the dehydrogenation of DHPMs by rhenium(I)
complexes under visible light irradiation, where DHPMs and
pyrimidin-2(1H)-ones do not absorb, thereby avoiding pro-
duction of undesired products. As will be discussed later,
upon irradiation with visible light (λ > 400 nm), a catalytic
to excellent yields in CH CN-H O solution containing
3
2
CCl and K CO . Luminescence quenching study and
4
2
3
product analysis reveal that photoinduced electron trans-
fer between rhenium(I) complex P and 3,4-dihydropyrimi-
din-2(1H)-ones plays an important role in the initial event.
(
4) (a) Atwal, K. S.; Rovnyak, G. C.; Kimball, S. D.; Floyd, D. M.;
The construction of the functionalized pyrimidin-2(1H)-
one moiety is of significance due to its occurrence in many
biologically active and medicinally significant structures.
Moreland, S.; Swanson, B. N.; Gougoutas, J. Z.; Schwartz, J.; Smillie, K. M.;
Malley, M. F. J. Med. Chem. 1990, 33, 2629. (b) Vanden Eynde, J. J.;
Audiart, N.; Canonne, V.; Michel, S.; Van Haverbeke, Y.; Kappe, C. O.
Heterocycles 1997, 45, 1967.
1
From a synthetic point of view, dehydrogenation of 3,4-
dihydropyrimidin-2(1H)-ones (DHPMs) offers an attractive
method for making pyrimidin-2(1H)-ones because DHPMs
are easily prepared by Biginelli three-component coupling
(5) Watanabe, M.; Koike, H.; Ishiba, T.; Okada, T.; Seo, S.; Hirai, K.
Bioorg. Med. Chem. 1997, 5, 437.
(6) Puchala, A.; Belaj, F.; Bergman, J.; Kappe, C. O. J. Heterocycl. Chem.
2
001, 38, 1345.
(7) Yamamoto, K.; Chen, Y. G.; Buono, F. G. Org. Lett. 2005, 7, 4673.
(8) Shanmugam, P.; Perumal, P. T. Tetrahedron 2006, 62, 9726.
2
reaction. However, unlike a large number of protocols
available for achieving nearly quantitative transformation
(
(
9) Shanmugam, P.; Perumal, P. T. Tetrahedron 2007, 63, 666.
10) Memarian, H. R.; Farhadi, A. Ultrason. Sonochem. 2008, 15, 1015.
3
of Hantzsch dihydropyridine to pyridine, the dehydrogena-
tion of DHPMs is extremely difficult owing to its higher
(11) Karade, N. N.; Gampawar, S. V.; Kondre, J. M.; Tiwari, G. B.
Tetrahedron Lett. 2008, 49, 6698.
(12) Singh, K.; Singh, K. Aust. J. Chem. 2008, 61, 910.
(13) Liang, R. R.; Wu, G. L.; Wu, W. T.; Wu, L. M. Chin. Chem. Lett.
(
1) (a) Rizzo, R. C.; Tirado-Rives, J.; Jorgensen, W. L. J. Med. Chem.
001, 44, 145. (b) Zhou, W.; Gumina, G.; Chong, Y.; Wang, J.; Schinazi,
R. F.; Chu, C. K. J. Med. Chem. 2004, 47, 3399.
2) (a) Kappe, C. O. Tetrahedron 1993, 49, 6937. (b) Kappe, C. O. Acc.
Chem. Res. 2000, 33, 879. (c) Kappe, C. O.; Stadler, A. Org. React. 2004,
8, 1.
3) (a) Jin, M.-Z.; Yang, L.; Wu, L.-M.; Liu, Y.-C.; Liu, Z.-L. Chem.
Commun. 1998, 2451. (b) Zhu, X.-Q.; Zhao, B.-J.; Cheng, J.-P. J. Org. Chem.
2009, 20, 1183.
2
(14) (a) Memarian, H. R.; Farhadi, A. Monatsh. Chem. 2009, 140, 1217.
(b) Memarian, H. R.; Farhadi, A.; Sabzyan, H.; Soleymani, M. J. Photo-
chem. Photobiol. A: Chem. 2010, 209, 95.
(15) Schanze, K. S.; MacQueen, D. B.; Perkins, T. A.; Cabana, L. A.
Coord. Chem. Rev. 1993, 122, 63.
(16) (a) Kutal, C.; Weber, M. A.; Ferraudi, G.; Geiger, D. Organome-
tallics 1985, 4, 2161. (b) Hawecker, J.; Lehn, J. M.; Ziessel, R. Helv. Chim.
Acta 1986, 69, 1990. (c) Johnson, F. P. A.; George, M. W.; Hartl, F.; Turner,
J. J. Organometallics 1996, 15, 3374. (d) Hayashi, Y.; Kita, S.; Brunschwig,
B. S.; Fujita, E. J. Am. Chem. Soc. 2003, 125, 11976. (e) Takeda, H.; Koike,
K.; Inoue, H.; Ishitani, O. J. Am. Chem. Soc. 2008, 130, 2023.
(
6
(
2
2
000, 65, 8158. (c) Nakamichi, N.; Kawashita, Y.; Hayash, M. Org. Lett.
002, 4, 3955. (d) Zhang, D.; Wu, L.-Z.; Zhou, L.; Han, X.; Yang, Q. Z.;
Zhang, L. P.; Tung, C. H. J. Am. Chem. Soc. 2004, 126, 3440. (e) Fang, X.;
Liu, Y.-C.; Li, C. J. Org. Chem. 2007, 72, 8608.
1
444 J. Org. Chem. 2011, 76, 1444–1447
Published on Web 02/01/2011
DOI: 10.1021/jo102062u
r 2011 American Chemical Society