Communication
Currently we are attempting to convert the syn-aldols of the
present study into enol ethers with a cis-disubstituted C=C
bond. This calls for cyclizing these compounds and decarb-
oxylating the resulting ꢀ-lactones pyrolytically.[54] The feasibility
of this approach has been demonstrated once – for dienol
ethers with a cis-configured RO–CH=CH-moiety.[18a] The stero-
complementary conversion of anti-aldols into trans-configured
enol ethers has been described, too.[55]
Acknowledgments
We thank Dr. Manfred Keller for the X-ray structure analysis.
Keywords: Aldol reaction · Diastereoselectivity · Enol
ethers · Glycolate · Grob fragmentation
[1] I. Gupta, J. Baptista, W. R. Bruce, C. T. Che, R. Furrer, J. S. Gingerich, A. A.
Grey, L. Marai, P. Yates, J. J. Krepinsky, Biochemistry 1983, 22, 241–245.
[2] D. L. Pruess, J. P. Scannell, M. Kellett, H. A. Ax, J. Janecek, T. H. Williams,
A. Stempel, J. Berger, J. Antibiot. 1974, 27, 229–233.
[3] A. González-Coloma, P. Escoubas, J. Mizutani, L. Lajide, Phytochemistry
1994, 35, 607–610.
[4] H.-J. Hansen, H. Schmid, Tetrahedron 1974, 30, 1959–1969.
[5] G. Nordmann, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125, 4978–4979.
[6] P. Nebois, A. E. Greene, J. Org. Chem. 1996, 61, 5210–5211.
[7] a) E. Wenkert, E. L. Michelotti, C. S. Swindell, M. Tingoli, J. Org. Chem.
1984, 49, 4894–4899; b) P. A. Ashworth, N. J. Dixon, P. J. Kocieński, S. N.
Wadman, J. Chem. Soc. Perkin Trans. 1 1992, 3431–3438.
[8] Reviews: a) R. W. Friesen, J. Chem. Soc. Perkin Trans. 1 2001, 1969–2001;
b) J. R. Dehli, J. Legros, C. Bolm, Chem. Commun. 2005, 973–986; c) D. J.
Winternheimer, R. E. Shade, C. A. Merlic, Synthesis 2010, 2497–2511.
[9] Recent example: M. Kondo, T. Kochi, F. Kakiuchi, J. Am. Chem. Soc. 2011,
133, 32–34.
Scheme 5. Stereoselective synthesis of enol ethers with a trisubstituted C=C
bond. Reagents and conditions: a) NEt3 (1.1 equiv.), DMAP (10 mol-%), DMPU,
0 °C, 50 min; ClP(=O)(OEt)2 (1.1 equiv.), –20 °C → room temp. overnight.[46]
b) NaH (1.15 equiv.), Et2O, 0 °C → r.t. in 30 min; ClP(=O)(OEt)2 (1.5 equiv.),
0 °C, 30 min.[47] c) CuI (3 equiv.), MeLi (3.2 equiv.), THF, 0 °C, 20 min; MeMgCl
(6.3 equiv.), –30 °C, 20 min; E-85, 3 h.[46] d) CuI (1.8 equiv.), MeLi (3.5 equiv.),
Et2O, 0 °C, 30 min; Z-85, –78 °C → –45 °C, 4 h.[47] e,f) K2OsO2(OH)4 (1 mol-
%), (DHQD)2PHAL (2 mol-%), K3Fe(CN)6 (3 equiv.), MeSO2NH2 (1 equiv.), K2CO3
(3 equiv.), tBuOH/H2O (1:1), 0 °C, 7 d.[48] g,h) BnBr (1.0 equiv.), Ag2O
(1.0 equiv.), Et2O, r.t., 7 h.[50] i,j) LiOH (2.5 equiv.), H2O2 (4 equiv.), THF/H2O
(2:1), r.t., 3 d; Na2SO3 (4 equiv.). k,l) DMF acetal 51 (2.5 equiv.), toluene, 70 °C,
2.5 h.
[10] E.g.: A. Moyano, F. Charbonnier, A. E. Greene, J. Org. Chem. 1987, 52,
2919–2922.
[11] Pioneering work: a) M. A. Keegstra, Tetrahedron 1992, 48, 2681–2690
(couplings with MeOH); b) Z. Wan, C. D. Jones, T. M. Koenig, Y. J. Pu, D.
Mitchell, Tetrahedron Lett. 2003, 44, 8257–8259 (couplings with phenols).
[12] T. O. Ronson, M. H. H. Voelkel, R. J. K. Taylor, I. J. S. Fairlamb, Chem.
Commun. 2015, 51, 8034–8036.
stereoselectively.
The
former
was
coupled
with
Me3Cu(MgHal)2[46] and the latter with Me2CuLi.[47] The resulting
esters Z- and E-86 were dihydroxylated asymmetrically,[48] – not
for achieving enantiocontrol but for ensuring a reasonably fast
conversion into the α,ꢀ-dihydroxyesters anti- and syn-87.[49]
Their respective α-OH was benzylated using BnBr/Ag2O without
affecting the ꢀ-OH overly.[50] The benzyl ether anti-88 resulted
in 59 % yield[51] and its diastereomer syn-88 in 63 % yield.
Saponification with LiOOH gave the α-benzyloxy-ꢀ-hydroxy-
carboxylic acids anti-89 (94 % yield) and syn-89 (95 % yield).
Subjected to Grob fragmentations at 70 °C, they delivered the
enol ethers Z-90 (93 % yield) and E-90 (91 % yield) isomerically
pure.[52,53]
[13] Pioneering work: a) P. Y. S. Lam, G. Vincent, D. Bonne, C. G. Clark, Tetrahe-
dron Lett. 2003, 44, 4927–4931; b) R. E. Shade, A. M. Hyde, J.-C. Olsen,
C. A. Merlic, J. Am. Chem. Soc. 2010, 132, 1202–1203.
[14] P. H. Dussault, D. G. Sloss, D. J. Symonsbergen, Synlett 1998, 1387–1389.
[15] E.g.: M. Satoh, N. Miyaura, A. Suzuki, Synthesis 1987, 373–377.
[16] Systematic study: K. Maeda, H. Shinokubo, K. Oshima, K. Utimoto, J. Org.
Chem. 1996, 61, 2262–2263.
[17] E.g.: a) J. Mulzer, G. Brüntrup, Chem. Ber. 1982, 115, 2057–2075; b) E.
Vogel, G. Caravatti, P. Franck, P. Aristoff, C. Moody, A.-M. Becker, D. Felix,
A. Eschenmoser, Chem. Lett. 1987, 16, 219–222; c) I. Fleming, M. Rowley,
J. Chem. Soc. Perkin Trans. 1 1987, 2259–2264; d) I. Fleming, S. Gil, A. K.
Sarkar, T. Schmidlin, J. Chem. Soc. Perkin Trans. 1 1992, 3351–3361.
[18] a) J. I. Luengo, M. Koreeda, Tetrahedron Lett. 1984, 25, 4881–4884; b) The
transformation 1b → trans-3b is described in ref.[19a] as well.
[19] a) M. Koreeda, J. I. Luengo, J. Org. Chem. 1984, 49, 2079–2081; b) M.
Koreeda, D. J. Ricca, J. I. Luengo, J. Org. Chem. 1988, 53, 5586–5588.
[20] a) D. A. Evans, J. V. Nelson, E. Vogel, T. R. Taber, J. Am. Chem. Soc. 1981,
103, 3099–3111; b) Aldol additions of a titanium enolate of tert-butyl
glycolate – with an unprotected α-O – are highly anti-selective, too: D.
Gawas, U. Kazmaier, J. Org. Chem. 2009, 74, 1788–1790.
Conclusion
In summary, a 3-step sequence of syn-selective glycolate aldol
addition, hydrolysis, and Grob fragmentation was established. It
allows to synthesize enol ethers with a disubstituted C=C bond
trans-selectively. The same kind of Grob fragmentation allowed
to synthesize enol ethers with a trisubstituted C=C bond both
Z- and E-selectively.
[21] Related Grob fragmentations mediated by a DMF acetal gave cyclic enol
ethers according to L. Alberch, G. Cheng, S.-K. Seo, X. Li, F. P. Boulineau,
A. Wei, J. Org. Chem. 2011, 76, 2532–2547.
[22] E.g.: a) M. G. Kulkarni, R. M. Rasne, S. I. Davawala, A. K. Doke, Tetrahedron
Lett. 2002, 43, 2297–2298; b) M. Balti, M. L. Efrit, N. E. Leadbeater, Tetrahe-
dron Lett. 2016, 57, 1804–1806.
Eur. J. Org. Chem. 2017, 5789–5794
5793
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim