8 Y. Liang, Y. Wu, D. Feng, S. Tsai, H. Son, G. Li and L. Yu, J. Am.
Chem. Soc., 2009, 131, 56.
9 R. Coffin, J. Peet, J. Rogers and G. Bazan, Nat. Chem., 2009, 1,
657.
10 P. Troshin, H. Hoppe, J. Renz, M. Egginger, J. Mayorova,
A. Goryachev, A. Peregudov, R. Lyubovskaya, G. Gobsch and
N. Sariciftci, Adv. Funct. Mater., 2009, 19, 779.
11 C. Yang, J. Kim, S. Cho, J. Lee, A. Heeger and F. Wudl, J. Am. Chem.
Soc., 2008, 130, 6444.
12 J. Peet, J. Kim, N. Coates, W. Ma, D. Moses, A. Heeger and
G. Bazan, Nat. Mater., 2007, 6, 497.
13 G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang and Y. Yang, Adv.
Funct. Mater., 2007, 17, 1636.
14 W. Ma, C. Yang, X. Gong, K. Lee and A. Heeger, Adv. Funct. Mater.,
2005, 15, 1617.
15 M. Jørgensen, K. Norrman and F. Krebs, Sol. Energy Mater. Sol.
Cells, 2008, 92, 686.
output current with doping concentration is well matched with
the decrease of series resistance in the solar cells (Table 1).
For example, there are significant improvements in both the
output current of OTFT devices and series resistance of solar cell
devices from 1% doped P-PCBM-S to 3% doped P-PCBM-S.
However, they are saturated after 3% of the doping concentra-
tion. In particular, the annealed device with 10% of DMC in
P-PCBM-S shown in Fig. 5(b) had more than 6 orders of
magnitude higher drain current than that of the device with
undoped P-PCBM-S. The systematic transition of device char-
acteristics including threshold voltage (Vt), conductivity, and on–
off current ratio (Ion/Ioff) as a function of the doping concen-
tration is obvious and it further elucidates the relationship
between the electrical properties of the n-doped P-PCBM-S
layers and the device performance of solar cells.
16 S. K. Hau, H. L. Yip, H. Ma and A. K. Y. Jen, Appl. Phys. Lett., 2008,
93, 233304.
17 S. K. Hau, H. L. Yip, K. Leong and A. K. Y. Jen, Org. Electron.,
2009, 10, 719.
4. Conclusion
18 C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley,
S. A. Choulis and C. J. Brabec, Appl. Phys. Lett., 2006, 89, 3.
19 M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and
D. S. Ginley, Appl. Phys. Lett., 2006, 89, 143517.
20 S. K. Hau, H. L. Yip, N. S. Baek, J. Y. Zou, K. O’Malley and
A. K. Y. Jen, Appl. Phys. Lett., 2008, 92, 253301.
21 T. Kuwabara, Y. Kawahara, T. Yamaguchi and K. Takahashi, ACS
Appl. Mater. Interfaces, 2009, 1, 2107.
22 Y. Z. Jin, J. P. Wang, B. Q. Sun, J. C. Blakesley and N. C. Greenham,
Nano Lett., 2008, 8, 1649.
23 D. Ko, J. Tumbleston, M. Ok, H. Chun, R. Lopez and E. Samulski, J.
Appl. Phys., 2010, 108, 083101.
A new thermally polymerizable fullerene derivative has been
synthesized to explore its use as an interfacial electron-trans-
porting material for inverted polymer solar cells. The key
advantage of this fullerene polymer (P-PCBM-S) is that it
enables multi-layer solution processing and facilitates cascade
electron transport for efficient electron collection in PSCs. It was
demonstrated that chemical n-doping of P-PCBM-S almost
double the power conversion efficiency of inverted devices. The
improved device performance is attributed to the decreased series
resistance and efficient electron extraction from the active layer
through the n-doped P-PCBM-S interfacial layer.
24 S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma and A. K. Y. Jen,
J. Mater. Chem., 2008, 18, 5113.
25 S. K. Hau, Y. J. Cheng, H. L. Yip, Y. Zhang, H. Ma and A. K. Y. Jen,
ACS Appl. Mater. Interfaces, 2010, 2, 1892.
26 C. H. Hsieh, Y. J. Cheng, P. J. Li, C. H. Chen, M. Dubosc,
R. M. Liang and C. S. Hsu, J. Am. Chem. Soc., 2010, 132,
4887.
Acknowledgements
27 Y. H. Zhou, H. Cheun, W. J. Potscavage, C. Fuentes-Hernandez,
S. J. Kim and B. Kippelen, J. Mater. Chem., 2010, 20,
6189.
28 H. H. Liao, L. M. Chen, Z. Xu, G. Li and Y. Yang, Appl. Phys. Lett.,
2008, 92, 173303.
29 A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz and K. Leo,
Appl. Phys. Lett., 2003, 82, 4495.
30 F. Huang, Y. J. Cheng, Y. Zhang, M. S. Liu and A. K. Y. Jen, J.
Mater. Chem., 2008, 18, 4495.
The authors thank the support from the National Science
Foundation (DMR-0120967), the Department of Energy
(DE-FC3608GO18024/A000), the AFOSR (FA9550-09-1-0426),
the Office of Naval Research (N00014-11-1-0300), and the World
Class University (WCU) program through the National
Research Foundation of Korea under the Ministry of Education,
Science and Technology (R31-21410035). A.K.-Y.J. thanks the
Boeing Foundation for support.
31 A. W. Hains and T. J. Marks, Appl. Phys. Lett., 2008, 92, 023504.
32 A. W. Hains, J. Liu, A. B. F. Martinson, M. D. Irwin and T. J. Marks,
Adv. Funct. Mater., 2010, 20, 595.
33 Y. Sun, X. Gong, B. B. Y. Hsu, H. L. Yip, A. K. Y. Jen and
A. J. Heeger, Appl. Phys. Lett., 2010, 97, 193310.
34 C. Chan, W. Zhao, A. Kahn and I. Hill, Appl. Phys. Lett., 2009, 94,
203306.
References
1 C. Brabec, N. Sariciftci and J. Hummelen, Adv. Funct. Mater., 2001,
11, 15.
35 D. V. Konarev, S. S. Khasanov, G. Saito, I. I. Vorontsov, A. Otsuka,
R. N. Lyubovskaya and Y. M. Antipin, Inorg. Chem., 2003, 42, 3706.
36 R. He, P. Toy and Y. Lam, Adv. Synth. Catal., 2008, 350, 54.
37 J. Hummelen, B. Knight, F. LePeq, F. Wudl, J. Yao and C. Wilkins,
J. Org. Chem., 1995, 60, 532.
38 G. Klarner, J. Lee, V. Lee, E. Chan, J. Chen, A. Nelson,
D. Markiewicz, R. Siemens, J. Scott and R. Miller, Chem. Mater.,
1999, 11, 1800.
2 G. Yu, J. Gao, J. Hummelen, F. Wudl and A. Heeger, Science, 1995,
270, 1789.
3 J. Halls, C. Walsh, N. Greenham, E. Marseglia, R. Friend, S. Moratti
and A. Holmes, Nature, 1995, 376, 498.
4 H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu,
Y. Wu and G. Li, Nat. Photonics, 2009, 3, 649.
5 Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, Adv.
Mater., 2010, 22, E135.
39 S. Y. Heriot and R. A. L. Jones, Nat. Mater., 2005, 4, 782.
40 P. Wei, J. Oh, G. Dong and Z. Bao, J. Am. Chem. Soc., 2010, 132,
8852.
6 Y. Li and Y. Zou, Adv. Mater., 2008, 20, 2952.
7 J. Hou, H. Chen, S. Zhang, G. Li and Y. Yang, J. Am. Chem. Soc.,
2008, 130, 16144.
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 6956–6961 | 6961