(
10 wt% NH
4
COOCH
3
dissolved in water) at 80 1C for 4–5 h,
1998, 31, 474–484; (f) M. Higuchi, S. Horike and S. Kitagawa,
Supramol. Chem., 2007, 19, 75–78.
followed by calcination at 550 1C for 3 h. This procedure was
repeated twice.
2
(a) C. Sanchez, B. Julian, P. Belleville and M. Popall, J. Mater.
Chem., 2005, 15, 3559–3592; (b) S. Kitagawa, R. Kitaura and S.
Noro, Angew. Chem., Int. Ed., 2004, 43, 2334–2375; (c) C. Janiak,
Dalton Trans., 2003, 2781–2804; (d) D. Maspoch, D. Ruiz-Molina
and J. Veciana, Chem. Soc. Rev., 2007, 36, 770–818; (e) C. Serre, C.
Mellot-Draznieks, S. Surble, N. Audebrand, Y. Filinchuk and G.
Ferey, Science, 2007, 315, 1828–1831.
Characterization
Samples were analyzed by X-ray diffraction (Bruker D5005),
DRIFT (Magna 550 Nicolet, SpectraTech cell, ZnSe windows,
MCT detector), N
2
absorption measurements (Micrometrics
3 (a) G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour,
S. Surble and I. Margiolaki, Science, 2005, 309, 2040–2042; (b) M.
Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keefe and
O. M. Yaghi, Science, 2002, 295, 469–472.
4 (a) K. Schlichte, T. Kratzke and S. Kaskel, Microporous Mesopor-
ous Mater., 2004, 73, 81–88; (b) L. Alaerts, E. Seguin, H. Poelman,
F. Thibault-Starzyk, P. A. Jacobs and D. E. De Vos, Chem.–Eur.
J., 2006, 12, 7353–7363.
5 For recent reviews on catalytic MOFs, see: (a) G. Ferey, Chem.
Soc. Rev., 2008, 37, 191–214; (b) U. Mueller, M. Schubert, F.
Teich, H. Puetter, K. Schierle-Arndt and J. Pastre, J. Mater.
Chem., 2006, 16, 626–636.
ASAP 2010 M) and chemical analysis (Spectroflame ICP-
OES). IRMOF samples were further characterized by TG/
1
TD analysis (Setaram-type SETSYS Evolution 12). For H
NMR (DX 400BRUCKER) MAS technique: 30 kHz spinning
rate, pulse duration 3 ms and repetition time 16 s. Peaks: d ꢀ0.4
(
(
Zn–(m -OH)–Zn), d 1–3 (DMF), d 4–5.5 (H O) and d 6–10
3
2
C
6
6
H ).
Catalytic alkylation
6
C. Perego, S. Amarilli, A. Carati, C. Flego, G. Pazzuconi, C. Rizzo
and G. Bellussi, Microporous Mesoporous Mater., 1999, 27, 345–354.
Toluene (Chimie-Plus, 99%), biphenyl (Alfa Aesar, 99%),
decane (Alfa Aesar, 99%), tert-butylchloride (Alfa Aesar
7 P. Horcajada, S. Surble, C. Serre, D. Y. Hong, Y. K. Seo, J. S.
Chang, J. M. Greneche, I. Margiolaki and G. Ferey, Chem.
Commun., 2007, 2820–2822.
9
8+%) and mesitylene (Aldrich, 98%) were used as received.
The reactants were dissolved in decane. The reaction was
carried out with an aryl : tert-butylchloride ratio of 2 : 1.
Typically, a mixture of 2 ml (18.8 mmol) of toluene, 1 ml of
tert-butylchloride (9.2 mmol) and 7 ml of decane were placed
in a 48 ml Teflon-lined autoclave (Top Industrie). 30 mg of
8
L. M. Huang, H. T. Wang, J. X. Chen, Z. B. Wang, J. Y. Sun, D.
Y. Zhao and Y. S. Yan, Microporous Mesoporous Mater., 2003, 58,
105–114.
J. Hafizovic, M. Bjorgen, U. Olsbye, P. D. C. Dietzel, S. Bordiga,
C. Prestipino, C. Lamberti and K. P. Lillerud, J. Am. Chem. Soc.,
9
2
007, 129, 3612–3620.
10 J. H. Liao, T. J. Lee and C. T. Su, Inorg. Chem. Commun., 2006, 9,
01–204.
ꢀ
5
catalysts were desorbed at 130 1C and 10 bar. After 2 h of
stirring at 170 1C, the solid was recovered by room tempera-
ture filtration, and the filtrate was analysed by gas chromato-
graphy (HP 6890N equipped with a 30 m HP5 column), using
2
1
1 N. L. Rosi, M. Eddaoudi, J. Kim, M. O’Keeffe and O. M. Yaghi,
Angew. Chem., Int. Ed., 2001, 41, 284–287.
12 T. Loiseau, H. Muguerra, G. Ferey, M. Haouas and F. Taulelle, J.
Solid State Chem., 2005, 178, 621–628.
5
% mesitylene as the internal standard.
1
3 S. Hausdorf, F. Baitalow, J. Seidel and F. Mertens, J. Phys. Chem.
A, 2007, 111, 4259–4266.
Catalyst re-use and leaching tests
1
4 M. Sabo, A. Henschel, H. Froede, E. Klemm and S. Kaskel, J.
Mater. Chem., 2007, 17, 3827–3832.
After the completion of reactions, the solid catalysts were first
filtered off. The filtrate and recovered solid were then treated
separately so as to investigate leaching issues and undertake
reuse, respectively. Fresh reactants in the same ratio as those
used in the previous tests were then added to the filtrate. The
solution mixture (in absence of solid) was then heated to 170 1C
for 2 h. Any conversion was then measured. On the other hand,
the recovered solid was washed with water, ethanol and
acetone prior to post-reaction characterization and reuse.
1
1
5 Y. W. Li and R. T. Yang, J. Am. Chem. Soc., 2006, 128, 726–727.
6 K. S. Walton and R. Q. Snurr, J. Am. Chem. Soc., 2007, 129,
8
552–8556.
17 A. J. Fletcher, K. M. Thomas and M. J. Rosseinsky, J. Solid State
Chem., 2005, 178, 2491–2510.
1
8 M. D. Foster, I. Rivin, M. M. J. Treacy and O. D. Friedrichs,
Microporous Mesoporous Mater., 2006, 90, 32–38.
1
9 (a) D. Mravec, P. Zavadan, A. Kaszonyi, J. Joffre and P. Moreau,
Appl. Catal., A, 2004, 257, 49–55; (b) R. Millini, F. Frigerio, G.
Bellussi, G. Pazzuconi, C. Perego, P. Pollesel and U. Romano, J.
Catal., 2003, 217, 298–309; (c) J. Horniakova, D. Mravec, J. Joffre
and P. Moreau, J. Mol. Catal. A: Chem., 2002, 185, 249–257; (d) Y.
Sugi, S. Tawada, T. Sugimura, Y. Kubota, T. Hanaoka, T.
Matsuzaki, K. Nakajima and K. Kunimori, Appl. Catal., A,
1999, 189, 251–261.
References
1
(a) J. L. C. Rowsell and O. M. Yaghi, Microporous Mesoporous
Mater., 2004, 73, 3–14; (b) M. J. Rosseinsky, Microporous Meso-
porous Mater., 2004, 73, 15–30; (c) O. M. Yaghi, M. O’Keeffe, N.
W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, Nature, 2003,
20 (a) E. Armengol, M. L. Cano, A. Corma, H. Garcia and M. T.
Navarro, J. Chem. Soc., Chem. Commun., 1995, 519–520; (b) S. B.
Pu, J. B. Kim, M. Seno and T. Inui, Microporous Mater., 1997, 10,
25–33.
423, 705–714; (d) A. K. Cheetham, G. Ferey and T. Loiseau,
Angew. Chem., Int. Ed., 1999, 38, 3268–3292; (e) O. M. Yaghi, H.
L. Li, C. Davis, D. Richardson and T. L. Groy, Acc. Chem. Res.,
21 F. X. Llabres i Xamena, A. Corma and H. Garcia, J. Phys. Chem.
´
C, 2007, 111, 80–85.
9
40 | New J. Chem., 2008, 32, 937–940
This journal is ꢂc The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2008