screening. Anal. Bioanal. Chem. 2004, 378, 621-633.
(14) Iwamatsu, T. Convenient method for sex reversal in a freshwater
teleost, the medaka. J. Exp. Zool. 1999, 283, 210-214.
(15) Chikae, M.; Ikeda, R.; Hasan, Q.; Morita, Y.; Tamiya, E. Effect
of alkylphenols on adult male medaka: plasma vitellogenin
goes up to the level of estrous female. Environ. Toxicol.
Pharmacol. 2003, 15, 33-36.
(16) Qin, S. J.; Budd, R.; Bondarenko, S.; Liu, W. P.; Gan, J. Y.
Enantioselective degradation and chiral stability of pyrethroids
in soil and sediment. J. Agric. Food Chem. 2006, 54, 5040-5045.
(17) Garey, J.; Wolff, M. S. Estrogenic and antiprogestagenic activities
of pyrethroid insecticides. Biochem. Biophys. Res. Commun.
1998, 251, 855-859.
(18) Akhtar, N.; Kayani, S. A.; Ahmad, M. M.; Shahab, M. Insecticide-
induced changes in secretory activity of the thyroid gland in
rats. J. Appl. Toxicol. 1996, 16, 397-400.
(19) Kaul, P. P.; Rastogi, A.; Hans, R. K.; Seth, T. D.; Seth, P. K.; Srimal,
R. C. Fenvalerate-induced alterations in circulatory thyroid
hormones and calcium stores in rat brain. Toxicol. Lett. 1996,
89, 29-33.
(20). Given the widespread use of pyrethroids, a more
comprehensive understanding of the significance of enan-
tioselectivity in both acute and chronic ecotoxicities is
imperative for improving risk assessment and regulation of
these pesticides (20). Development of enantiomer-enriched
pesticide products should consider the selection of the
enantiomer with a high potency toward the target organisms
but a low adverse effect to nontarget species.
Acknowledgments
This study was supported by the National Basic Research
Program of China (2002CB410800), the program for Cangjiang
Scholars and Innovative Research Team in University (No.
IRT 0653), and the national natural science foundation of
China for international cooperation of distinguished young
scholars program awarded to J.G. and W.L. (No. 20628708).
We thank FMC for providing 14C-labeled bifenthrin.
(20) Liu, W. P.; Gan, J. Y.; Schlenk, D.; Jury, W. A. Enantioselectivity
in environmental safety of current chiral insecticides. Proc. Natl.
Acad. Sci. U.S.A. 2005, 102, 701-706.
(21) Liu, W. P; Gan, J. Y.; Lee, S. J.; Werner, I. Isomer selectivity in
aquatic toxicity and biodegradation of bifenthrin and per-
methrin. Environ. Toxicol. Chem. 2005, 24, 1861-1866.
(22) Liu, W. P.; Gan, J. J; Qin, S. J. Separation and aquatic toxicity
of enantiomers of synthetic pyrethroid insecticides. Chirality
2005, 17, S127-S133.
(23) Liu, T. L.; Wang, Y. S.; Yen, J. H. Separation of bifenthrin
enantiomers by chiral HPLC and determination of their toxicity
to aquatic organism. J. Food Drug Anal. 2005, 13, 357-360.
(24) Liu, W. P.; Lin, K. D.; Gan, J. Y. Separation and aquatic toxicity
of enantiomers of the organophosphorus insecticide trichlo-
ronate. Chirality 2006, 18, 713-716.
(25) Lin, K. D.; Zhou, S. S.; Xu, C.; Liu, W. P. Enantiomeric resolution
and biotoxicity of methamidophos. J. Agric. Food Chem. 2006,
54, 8134-8138.
(26) Garrison, A. W.; Schmitt, P.; Martens, D.; Kettrup, A. Enantio-
meric selectivity in the environmental degradation of dichlo-
rprop as determined by high-performance capillary electro-
phoresis. Environ. Sci. Technol. 1996, 30, 2449-2455.
(27) Lewis, D. L; Garrison, A. W.; Wommack, K. E.; Whittemore, A.;
Steudler, P.; Melillo, J. Influence of environmental changes on
degradation of chiral pollutants in soils. Nature 1999, 401, 898-
901.
(28) Buser, H. R.; Mu¨ller, M. D.; Poiger, T.; Balmer, M. E. Environ-
mental behavior of the chiral acetamide pesticide metalaxyl:
Enantioselective degradation and chiral stability in soil. Environ.
Sci. Technol. 2002, 36, 221-226.
Literature Cited
(1) Colborn, T.; vom Saal, F. S.; Soto, A. M. Developmental effects
of endocrine-disrupting chemicals in wildlife and humans.
Environ. Health Perspect. 1993, 101, 378-384.
(2) International workshop on endocrine disruptors, 1997; http://
epa.gov/endocrine/Pubs/smithrep.pdf (accessed Jan 23-24,
1997).
(3) Gillesby, B. E.; Zacharewski, T. R. Exoestrogens: Mechanisms
of action and strategies for identification and assessment.
Environ. Toxicol. Chem. 1998, 17, 3-14.
(4) Go, V.; Garey, J.; Wolff, M. S.; Pogo, B. G. T. Estrogenic potential
of certain pyrethroid compounds in the MCF-7 human breast
carcinoma cell line. Environ. Health Perspect. 1999, 107, 173-
177.
(5) Korach, K. S.; McLachlan, J. A. Techniques for detection of
estrogenicity. Environ. Health Perspect. 1995, 103, 5-8.
(6) Andersen, H. R.; Andersson, A. M.; Arnold, S. F.; Autrup, H.;
Barfoed, M.; Beresford, N. A.; Bjerregaard, P.; Christiansen, L.
B.; Gissel, B.; Hummel, R.; Jørgensen, E. B.; Korsgaard, B.; Guevel,
R. L.; Leffers, H.; McLachlan, J.; Møller, A.; Nielsen, J. B.; Olea,
N.; Oles-Karasko, A.; Pakdel, F.; Pedersen, K. L.; Perez, P.;
Skakkeboek, N. E.; Sonnenschein, C.; Soto, A. M.; Sumpter, J.
P.; Thorpe, S. M.; Grandjean, P. Comparison of short-term
estrogenicity tests for identification of hormone-disrupting
chemicals. Environ. Health Perspect. 1999, 107, 89-108.
(7) Andersen, H. R.; Vinggaard, A. M.; Rasmussen, T. H.; Gjer-
mandsen, I. M.; Bonefeld-Jørgensen, E. C. Effects of currently
used pesticides in assays for estrogenicity, androgenicity, and
aromatase activity in vitro. Toxicol. Appl. Pharmacol. 2002, 179,
1-12.
(8) Chen, H. Y.; Xiao, J. G.; Hu, G.; Zhou, J. W.; Xiao, H.; Wang, X.
R. Estrogenicity of organophosphorus and pyrethroid pesticides.
J. Toxicol. Environ. Health, Part A 2002, 65, 1419-1435.
(9) Xie, L.; Sapozhnikova, Y.; Bawardi, O.; Schlenk, D. Evaluation
of wetland and tertiary wastewater treatments for estrogenicity
using in vivo and in vitro assays. Arch. Environ. Contam. Toxicol.
2004, 48, 81-86.
(10) Soto, A. M.; Sonnenschein, C.; Chung, K. L.; Fernandez, M. F.;
Olea, N.; Serrano, F. O. The E-SREEN assay as a tool to identify
estrogens: an update on estrogenic environmental pollutants.
Environ. Health Perspect. 1995, 103, 113-122.
(11) Payne, J.; Jones, C.; Lakhani, S.; Kortenkamp, A. Improving the
reproducibility of the MCF-7 cell proliferation assay for the
detection of xenoestrogens. Sci. Total Environ. 2000, 248, 51-
62.
(12) Nishi, K.; Chikae, M.; Hatano, Y.; Mizukami, H.; Yamashita, M.;
Sakakibara, R.; Tamiya, E. Development and application of a
monoclonal antibody-based sandwich ELISA for quantification
of Japanese medaka (Oryzias latipes) vitellogenin. Comp.
Biochem. Physiol., C 2002, 132, 161-169.
(29) Wedyan, M.; Preston, M. R. Isomer-selective adsorption of amino
acids by components of natural sediments. Environ. Sci. Technol.
2005, 39, 2115-2119.
(30) Garrison, A. W. Probing the enantioselectivity of chiral pesticides.
Environ. Sci. Technol. 2006, 40, 16-23.
(31) McBlain, W. A.; Lewin, V.; Wolfe, F. H. Differing estrogenic
activities for the enantiomers of o,p′-DDT in immature female
rats. Can. J. Physiol. Pharmacol. 1976, 54, 629-632.
(32) McBlain, W. A. The levo enantiomer of o,p′-DDT inhibits the
biding of 17â-estradiol to the estrogen receptor. Life Sci. 1987,
40, 215-221.
(33) Hoekstra, P. F.; Burnison, B. K.; Neheli, T.; Muir, D. C. G.
Enantiomer-specific activity of o,p′-DDT with the human
estrogen receptor. Toxicol. Lett. 2001, 125, 75-81.
(34) Yang, W. C.; Gan, J. Y.; Hunter, W.; Spurlock, F. Effect of
suspended solids on bioavailability of pyrethroid insecticides.
Environ. Toxicol. Chem. 2006, 25, 1585-1591.
Received for review January 28, 2007. Revised manuscript
received June 5, 2007. Accepted June 15, 2007.
(13) Nilsen, B. M.; Berg, K.; Eidem, J. K.; Kristiansen, S. I.; Brion, F.;
Porcher, J. M.; Goksøyr, A. Development of quantitative vitel-
logenin-ELISAs for fish test species used in endocrine disruptor
ES070220D
9
6128 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 41, NO. 17, 2007