2
3
06
Vol. 51, No. 2
51.0203 (MϪH), using the negative mode (Calcd: 351.0180); IR (nmax
)
References
Ϫ1
(
film) cm : 1644 (CϭO), 1505, 1257 (SϭO), 1053 (C–O–S), 1017, 860;
1) Mossa J. S., Abdel Sattar E., Abou-Shoer M., Galal A. M., Int. J.
Pharmacognosy, 34, 198—201 (1996).
1
13
H- and C-NMR: See Tables 1 and 2.
Fermentation of 5,3
,4
-Trihydroxy-7-methoxyflavanone (4) 7-
2) Ahmed M. S., Galal A. M., Ross S. A., Ferreira D., El-Sohly M. A.,
Ibrahim A.-R. S., Mossa J. S., El-Feraly F. S., Phytochemistry, 58,
599—602 (2001).
3) Habtemariam S., J. Nat. Prod., 60, 775—778 (1997).
4) Ibrahim A.-R. S., Phytochemistry, 53, 209—212 (2000).
5) Ibrahim A.-R. S., Manuscript in preparation.
6) Harborne J. B., Phytochemistry, 14, 1331—1337 (1975).
7) Barron D., Ibrahim R. K., Phytochemistry, 26, 1181—1184 (1987).
8) Mann P., Tofern B., Kaloga M., Eich E., Phytochemistry, 50, 267—271
(1999).
9) Barron D., Varin L., Ibrahim R. K., Harborne J. B., Williams C. A.,
Phytochemistry, 27, 2375—2395 (1988).
Methyleriodictyol (4, 305 mg) was dissolved in 7.5 ml DMF and equally dis-
tributed among 30 flasks containing stage II cultures of C. elegans. After an
incubation period of 7 d, cells were removed by filtration over cheese cloth
and the broth which contained the metabolite was extracted with an equal
volume of n-BuOH and processed as described previously to give 900 mg of
an amber colored semisolid residue. Sephadex LH 20 column chromatogra-
phy of the butanolic residue gave 34 mg of eriodictyol-4Ј-sulfate (5) beside
1
4 mg of an unidentified minor product.
2
5
Eriodictyol-4Ј-sulfate: mp Ͼ300 °C; [a]D Ϫ23° (cϭ0.024, MeOH); UV
(MeOH) nm: 216, 290, 328 (sh); ϩAlCl : 218, 308, 378; ϩNaOMe:
l
2
(
3
(
1
max
3
16, 232, 284, 327 (sh) decomposition; ϩNaOAc: 302, 390. EI-MS m/z
ϩ
%rel. int.): 288 (MϪ80) (9), 166 (12), 153 (21), 136 (10); HR-ESI-MS: 10) Arthan D., Suasti J., Kittakoop P., Pittayakhachonwut D., Tanticharoen
ϩ
ϩ
69.0278 (MϩH) (Calcd: 369.0275), 289.0716 (MϪ80ϩH) ; IR (nmax)
M, Thebtaranonth Y., Phytochemistry, 59, 459—463 (2002).
11) Harborne J. B., Phytochemistry, 14, 1147—1155 (1975).
12) Cos P., Ying L., Calomme M., Hu J. P., Cimanga K., Poel B. V., Pieters
L., Vlietinck A. J., Berghe D. V., J. Nat. Prod., 61, 71—76 (1998).
13) Yagi A., Uemura T., Okamura N., Haraguchi H., Imoto T., Hashimoto
R., Phytochemistry, 35, 885—887 (1994).
Ϫ1
KBr) cm : 1640 (CϭO), 1507, 1340, 1343, 1272 (SϭO), 1185, 1162,
048 (C–O–S), 804 (S–O); H- and C-NMR (DMSO-d ): See Tables 1, 2.
1
13
6
Fermentation of 5,4
-Dihydroxy-7,3
-dimethoxyflavanone with C. ele-
gans 7-Methylhomoeriodictyol [6, 550 mg], dissolved in 14 ml DMF, was
equally distributed among 56 Flasks containing stage II culture of C. ele-
gans. After incubation on a gyratory shaker for two weeks, the fermentation 14) Haraguchi H., Ohmi I., Sakai S., Fukuda A., J. Nat. Prod., 59, 443—
was stopped, cells filtered and the broth extracted with an equal volume of n-
445 (1996).
BuOH. Sephadex LH 20 column chromatography of the extract (2 g) gave 15) Takamatsu S., Galal A. M., Ross S. A., Ferreira D., Elsohly M. A.,
1
50 mg of homoeriodictyol-7-sulfate (8) and 8 mg of homoeriodictyol (7).
Ibrahim A.-R. S., El-Feraly F. S., 42nd Annual Meeting of the Ameri-
can Society of Pharmacognosy, Oaxaca, Mexico, Abstract book, 2001,
p. 207.
2
5
Homoeriodictyol-7-sulfate (8): mp Ͼ300 °C; [a]D Ϫ2.7° (cϭ0.046,
MeOH); UV lmax (MeOH) nm: 218, 308, 378; ϩNaOMe: 214, 282, 337;
ϩAlCl : 302, 390; ϩNaOAc: 218, 308, 378; EI-MS m/z (%rel. int.): 302 16) Williams R. T., “Biochemistry of Phenolic Compounds,” ed. by Har-
3
ϩ
(
(
(
MϪ80) (55), 166 (22), 153 (61), 150 (56); HR-ESI-MS: 383.0442
MϩH) (Calcd: 383.0431); IR (n ) (KBr) cm : 1639 (CϭO), 1272
SϭO), 1063 (CϭO), 801 (S–O); H- and C-NMR: See Tables 1, 2.
borne J. B., Academic Press, London, 1964, p. 205.
17) Cerniglia C. E., Freeman J. B., Mitchum R. K. Appl. Environ. Micro-
biol., 43, 1070—1075 (1982).
18) Harborne J. B., Mabry T. J., Mabry H. (ed.), “The Flavonoids,” Acade-
mic Press, New York, 1975, p. 75.
ϩ
Ϫ1
max
1
13
1
13
Homoeriodictyol (7): H- and C-NMR data: See Tables 1, 2, respec-
tively. All the NMR data were identical to those reported for homoeriodic-
tyol.
Acid Hydrolysis of 3, 5 and 8
19,20)
19) Mabry T. J., Markham K. R., Thomas M. B. (ed.), “The Systematic
Identification of Flavonoids,” Springer, New York, 1970.
8
)
5 Mg of 3, 5, 8 were separately dis-
solved in 10 ml MeOH and mixed with 25 ml 3% HCl at room temperature. 20) Agrawal P. K., Bansal M. C. (ed.), “Carbon-13 NMR of Flavonoids,”
After evaporation of MeOH, under reduced pressure, CHCl was used to ex-
Elsevier, Berlin, 1989.
tract the aglycones 2, 9, 7, respectively. After evaporation of the solvent, the 21) Pauli G. F., Matthiesen U., Fronezek F. R., Phytochemistry, 52, 1075—
residue was analyzed by direct comparison with reference samples by TLC
1084 (1999).
and spectroscopic measurements. The sulfate remaining in the aqueous layer 22) Ibrahim A-R. S., Galal A. M., Mossa J. S., El-Feraly F. S., Phytochem-
3
was detected by giving white precipitate with BaCl2.
istry, 46, 1193—1195 (1997).
2
3) Galal A. M., Ibrahim A.-R. S., Mossa J. S., El-Feraly F. S., Phy-
tochimstry, 51, 761—765 (1999).
Acknowledgments The authors are grateful to Dr. Charles D. Hufford,
School of Pharmacy, University of Mississippi for collecting the NMR data 24) Orabi K. Y., Galal A. M., Ibrahim A.-R. S., El-Feraly F. S., Khalifa S.
and Dr. Chuck Dunbar, Natural Products Center, School of Pharmacy, Uni-
versity of Mississippi, MS, U.S.A. for the HR-ESI-FT-MS analysis.
I., El-Sohly H. N., Phytochemistry, 51, 257—261 (1999).