C. Delhomme et al. / Journal of Organometallic Chemistry 724 (2013) 297e299
299
Table 2
C.D. is grateful to IGSSE (project 2.07) for a PhD grant and L.A.S.
is grateful to TUM Graduate School and the Bavarian Elite Network
NanoCat for financial support.
Hydrogenation of levulinic acid (1.58 mmol) with Ru catalyst following general
procedure C (0.0158 mmol Ru, calculated by elemental analysis) at 140 C and
ꢁ
2
5.5 MPa H in 40 ml water; in entry 11, 6 (0.0513 mmol) was added: Turnover
frequency (TOF), conversion (X) and selectivity (S) were determined after 5 or 24 h.
Appendix A. Supplementary material data
ꢁ
N
Catalyst
TOF,
molGVL molRu
X after S after X after S after
ꢀ
1
ꢀ1
h
5 h, %
5 h, %
24 h, % 24 h, %
9
7
78
210
92
49
74
22
81
91
86
97
90
23
87
86
97
10
[RuCl
[RuCl
3
2
] þ 6
(PPh
11
3 3
) ]
References
[
1] T. Werpy, G. Petersen, Top Value Added Chemicals From Biomass, Pacific
Northwest National Laboratory, National Renewable Energy Laboratory for
the US Department of Energy, 2004.
molRu 1
ꢀ
h
ꢀ1
Þ, and conversion stopped at 23%, exem-
ð92 mol
GVL
plifying the necessity of the catalyst’s water solubility.
The catalytic activity of the various Ru phosphine systems seems
to be highly dependent on the ligand’s steric bulk. Lowest TOFs
were observed for ligands 1 and 2, but no black particles e indic-
ative of cluster formation e were observed. Given the small cone
[3] I.T.Horvath, H. Mehdi, V.Fabos, L. Boda, L.T.Mika, GreenChem. 10(2008)238e242.
[4] G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106 (2006) 4044e4098.
[
5] H. Mehdi, V. Fábos, R. Tuba, A. Bodor, L. Mika, I. Horváth, Top. Catal. 48 (2008)
9e54.
6] L.E. Manzer, Appl. Catal. A Gen. 272 (2004) 249e256.
4
ꢁ
ꢁ
angles of the ligands (ca 137 for 1, and 103 for 2) [32e34] it is
[
likely that under the examined conditions these ligands form
[7] Z.-p. Yan, L. Lin, S. Liu, Energy & Fuels 23 (2009) 3853e3858.
[8] J.J. Bozell, G.R. Petersen, Green Chem. 12 (2010) 539e554.
þ
complexes of general composition [RuH
2
L
4
] or even [RuHL
5
] ,
[
9] D.W. Rackemann, W.O.S. Doherty, Biofuels, Bioprod. Biorefin. 5 (2011) 198e214.
10] R.W. Thomas, H.A. Schuette, M.A. Cowley, J. Am. Chem. Soc. 53(1931) 3861e3864.
[11] R.S. Assary, L.A. Curtiss, Chem. Phys. Lett. 541 (2012) 21e26.
restricting the space for carbonyl coordination [35,36]. Ligands
[
ꢁ
ꢁ
TPPMS 5 and TPPTS 6 with higher cone angles (151 and 165 ,
[
12] P. Azadi, R. Carrasquillo-Flores, Y.J. Pagan-Torres, E.I. Gurbuz, R. Farnood,
J.A. Dumesic, Green Chem. 14 (2012) 1573e1576.
13] A.M.R. Galletti, C. Antonetti, V. De Luise, M. Martinelli, Green Chem. 14 (2012)
688e694.
14] E.I. Gurbuz, S.G. Wettstein, J.A. Dumesic, ChemSusChem 5 (2012) 383e387.
15] A.M. Hengne, C.V. Rode, Green Chem. 14 (2012) 1064e1072.
16] J.P. Lange, E. van der Heide, J. van Buijtenen, R. Price, ChemSusChem 5 (2012)
150e166.
[17] K.W. Omari, J.E. Besaw, F.M. Kerton, Green Chem. 14 (2012) 1480e1487.
18] J.M. Tukacs, D. Kiraly, A. Stradi, G. Novodarszki, Z. Eke, G. Dibo, T. Kegl,
L.T. Mika, Green Chem. 14 (2012) 2057e2065.
[19] S.G. Wettstein, J.Q. Bond, D.M. Alonso, H.N. Pham, A.K. Datye, J.A. Dumesic,
respectively) [37] show higher catalytic activity, which might be
explained by the formation of [RuH L (OH )] [35,38]. The higher
2 3 2
steric bulk of the ligand facilitates a free site for better substrate
[
[
[
[
coordination in the latter case. Although ligand TXPTS 3 shows
ꢁ
significant steric bulk (210 ) [39], catalytic activity was modest.
Obviously, there is an upper limit of steric congestion, which is
already exceeded in this case. Electronic effects appear to be
overruled by steric effects, since the comparable electronic prop-
erties of 3, 5 and 6 do not account for the detected catalytic
disparity [40]. In the cases of 3e6, complex decomposition was
observed, indicated by visible Ru colloids and probably caused by
higher steric bulk [41]. Nevertheless, catalytic activity should have
[
Appl. Cat. B Environ. 117 (2012) 321e329.
20] J.H. Zhang, L. Lin, S.J. Liu, Energy & Fuels 26 (2012) 4560e4567.
21] G.M.G. Maldonado, R.S. Assary, J. Dumesic, L.A. Curtiss, Energy Environ. Sci. 5
[
[
(2012) 6981e6989.
improved hereafter, as observed for [Ru(acac)
such an increase might be explained by the coordination of abun-
dant phosphine ligands to the Ru clusters.
3
]. The absence of
[22] USA, E.I. Dupont De Nemoursand Company, InternationalPatent WO02/074760
A1 Pat., 2004.
[
[
23] USA, E.I. Dupont De Nemours and Company, US Patent 6617464 B2 Pat., 2003.
24] USA, E.I. Dupont De Nemours and Company, US Patent 09/885413 Pat., 2002.
The lower activity of the immobilized ligand could be explained
by higher electron density at the Ru center or by diffusion limita-
tions e further experiments are underway to gain more insights.
[25] E. Starodubtseva, O. Turova, M. Vinogradov, L. Gorshkova, V. Ferapontov, Russ.
Chem. Bull. 54 (2005) 2374e2378.
[26] E. Starodubtseva, O. Turova, M. Vinogradov, L. Gorshkova, V. Ferapontov, Russ.
Chem. Bull. 56 (2007) 552e554.
In summary, levulinic acid can be reduced to GVL in water at
[27] F. Joó, Z. Tóth, M.T. Beck, Inorg. Chim. Acta 25 (1977) L61eL62.
[28] M. Chalid, A.A. Broekhuis, H.J. Heeres, J. Mol. Catal. A Chem. 341 (2011) 14e21.
ꢁ
1
40 C and 5 MPa (H
2
) using ruthenium complexes and a wide
[
[
29] J.C. Serrano-Ruiz, D. Wang, J.A. Dumesic, Green Chem. 12 (2010) 574e577.
30] Y. Uozumi, Y. Nakai, Org. Lett. 4 (2002) 2997e3000.
range of water-soluble phosphines, with a conversion and selec-
tivity of up to 99% and 97% within 5 h e a short reaction time under
[31] Y. Kayaki, Y. Shimokawatoko, T. Ikariya, Adv. Synth. Catal. 345 (2003) 175e179.
[32] C.A. Tolman, Chem. Rev. 77 (1977) 313e348.
[33] A.G. Orpen, P.G. Pringle, M.B. Smith, K. Worboys, J. Organomet. Chem. 550
these comparably mild conditions.
A
maximal TOF of ca.
could be determined, depending on
the steric ligand properties. Nonetheless, highest TOFs
ꢀ
1
ꢀ1
2
00 molGVL molRu
h
(1998) 255e266.
[34] A.D. Phillips, L. Gonsalvi, A. Romerosa, F. Vizza, M. Peruzzini, Coord. Chem.
ꢀ
1
ꢀ1
ð > 550 mol
molRu
h
Þ
were recorded by less defined
Rev. 248 (2004) 955e993.
GVL
[
[
[
35] S.E. Clapham, A. Hadzovic, R.H. Morris,Coord. Chem. Rev. 248 (2004)2201e2237.
36] G. Laurenczy, F. Joó, L. Nádasdi, Inorg. Chem. 39 (2000) 5083e5088.
37] D.F. Shriver, Acc. Chem. Res. 3 (1970) 231e238.
heterogeneous catalyst systems, Ru clusters and 5% Ru on alumina.
Better defined and more convenient to handle PEG-immobilized
catalyst systems led to lower TOFs but higher conversion in
comparison to the best homogeneous systems under examination.
C.D. and L.A.S. are grateful for generous financial support through
TUM Graduate School and Elitenetzwerk Bayern: NANOCAT.
[38] E. Fache, C. Santini, F. Senocq, J.M. Basset, J. Mol. Catal. 72 (1992) 337e350.
[39] L.R. Moore, E.C. Western, R. Craciun, J.M. Spruell, D.A. Dixon, K.P. O’Halloran,
K.H. Shaughnessy, Organometallics 27 (2008) 576e593.
[40] E. Monflier, A. Mortreux, J. Mol. Catal. 88 (1994) 295e300.
[41] H. Gulyás, A.C. Bényei, J. Bakos, Inorg. Chim. Acta 357 (2004) 3094e3098.