LETTER
Preparation of Polymer-Supported Selenocyanates and their Application
1761
Scheme 2
We also prepared polymer-supported arylselenocyanates, References and Notes
whose selenocyano groups are directly attached to the ar-
(
1) (a) Obrecht, D.; Villalgordo, A. M. Solid-Supported
Combinatorial and Parallel Synthesis of Small-Molecular
omatic ring (Scheme 2). Stirring either arylselenocyanate
1
0
7
or 8 and aminomethyl-polystyrene resin (2.0 mmol/g,
crosslinked with 3 % divinylbenzene) in the presence of
-ethyl-1-[3-(dimethylamino)propyl]carbodiimide hy-
drochloride (EDC HCl) and 1-hydroxybenzotriazole
HOBt) in dichloromethane,11 the corresponding poly-
mer-supported arylselenocyanates 9 and 10 were obtained
Weight Compound Libraries; Pergamon Press: Oxford, 1998.
(b) Booth, S.; Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees,
D. C. Tetrahedron 1998, 54, 15385. (c) Thompson, L. A.;
Ellman, J. A. Chem. Rev. 1996, 96, 555. (d) Fruchtel, J. S.;
Jung, G. Angew. Chem., Int. Ed. Engl. 1996, 35, 17.
3
.
(
(
2) (a) Liotta, D. Ed. Organoselenium Chemistry; Wiley: London,
1
987. (b) Paulmier, C. Ed. Selenium Reagents and
Intermediates in Organic Synthesis; Pergamon Press: Oxford,
986. (c) Reich, H. J. J. Org. Chem., 1974, 39, 428 .
1
2
respectively in nearly quantitative yield. In this type of
polymer-supported selenocyanate, the corresponding se-
lenenyl bromide 11, which acted as an electrophilic re-
agent, was easily prepared by the addition of bromine.
Furthermore, after the removal of excess bromine, the cor-
responding solid-phase selenolactonization of (E)-4-phe-
nyl-3-butenoic acid proceeded in dichloromethane. Also
in this case, subsequent deselenenylation reaction with m-
CPBA proceeded smoothly to provide 6 in decent yield
1
(d) Nicolaou, K. C.; Seitz, S. P.; Sipio, W. J.; Blount, J. F.
J. Am. Chem. Soc. 1979, 101, 3884. (e) Nicolaou, K. C.;
Magolda, R. L.; Sipio, W. J.; Barnette, W. E.; Lysenko, Z.;
Joullie, M. M. J. Am. Chem. Soc., 1980, 102, 3784.
(f) Hayama, T.; Tomoda, S.; Takeuchi, Y.; Nomura, Y.
Tetrahedron Lett., 1982, 23, 4733. (g) Tomoda, S.; Usuki, Y.;
Fujita, K.; Iwaoka, M. Rev. Heteroatom Chem., 1991, 4, 249.
(
h) Fujita, K. J. Syn. Org. Chem., Jpn. 1996, 54, 166.
(
33 % yield from 9, 46 % yield from 10).
(3) (a) Paquette, L. A. Ed. Encyclopedia of Reagents for Organic
Synthesis; John Wiley & Sons: Chichester, 1995; p 4019.
Moreover, in the case of using 10 and 4-pentenoic acid,
the corresponding solid-phase selenolactonization pro-
ceeded smoothly to afford 12 (Scheme 3). However, fol-
lowed by reduction with triphenyltin hydride (Ph SnH),
the corresponding deselenenylation product 13 was ob-
(
1
b) Sevrin, M.; Krief, A. J. Chem. Soc., Chem. Commun.,
980, 656. (c) Tomoda, S.; Takeuchi, Y.; Nomura, Y. Chem.
Lett., 1982, 1733.
1
3
(4) Nicolaou, K. C.; Pastor, J.; Barluenga, S.; Winssinger, N.
Chem. Commun. 1998, 1947.
3
(
5) Previous related report: Michels, R.; Kato, M.; Heitz, W.
Makromol. Chem. 1976, 177, 2311.
tained in low yield probably due to unexpected side-reac-
tion of amide linker with Ph SnH (20 % yield from 10).
3
(
6) 2: pale yellow beads; IR (KBr): 3025, 2922, 2149, 1707, 1510,
–
1
We are currently trying to apply this method to other reac-
tions and to the asymmetric version. The results will be re-
ported in due course.
1451, 1422, 1190, 700, 596 cm ; Anal Calcd: C, 64.17; H,
5.05; N, 4.63; Se, 26.14 %. Found: C, 64.19; H, 4.96; N, 4.01;
Se, 24.21 %.
(
(
7) 4: pale yellow beads; IR (KBr): 3027, 2924, 2149, 1605, 1510,
–
1
1
1
248, 1175, 1017, 758 cm ; Anal Calcd: C, 82.16; H, 6.69; N,
.43; Se, 8.08 %. Found: C, 81.51; H, 6.83; N, 1.30; Se, 7.74
%.
8) Behaghel, O.; Seibert, H. Ber. 1933, 66, 708.
Scheme 3
Synlett 1999, No. 11, 1760–1762 ISSN 0936-5214 © Thieme Stuttgart · New York