1312
P. Falus et al. / Tetrahedron Letters 52 (2011) 1310–1312
phatic ketones 1a–d into the corresponding amines 2a–d (in 38–
64% yields). On the other hand, Zn dust was not effective for the
transformation of aliphatic and cycloaliphatic ketones 1a–d (see
Method B in Table 1), while 10% Pd/C-catalysis resulted in signifi-
cant formation of side products (mostly bisalkylated-amines),
thereby decreasing the yields of the desired amines 2e–i (see
Method C in Table 1).
Supplementary data
Supplementary data (experimental details) associated with this
article can be found, in the online version, at doi:10.1016/
References and notes
We also investigated the application of these methods for the
reductive amination of ketones in continuous-flow systems using
the X-Cube flow reactor. Since various Zn-salts were formed and
precipitated during the Zn dust promoted reductive aminations
(Methods A and B, Fig. 1 and Table 1), these methods were
not appropriate for the continuous-flow system. As the reaction
mixture remains homogeneous with the 10% Pd/C-catalyst
(Method C, Fig. 1 and Table 1), reductive aminations of aliphatic
and cycloaliphatic ketones 1a–d were carried with the continu-
ous-flow system using a packed-bed column containing 10%
Pd/C (Method D, Fig. 1 and Table 1: 6 equiv of HCOONH4 and
1. Henkel, T.; Brunne, R. M.; Müller, H.; Reichel, F. Angew. Chem., Int. Ed. 1999, 38,
643.
2. Chiral Amine Synthesis—Developments and Applications; Nugent, T. C., Ed.;
Wiley-VCH: Weinheim, 2010.
3. Pesticide Synthesis Handbook; Unger, T. A., Ed.; Noyes Publications: Park Ridge,
1996.
4. Industrial Organic Pigments: Production Properties Applications (3rd Completely
Revised Edition); Herbst, W., Hunger, K., Eds.; Wiley-VCH: Weinheim, 2004.
5. For reviews on reductive aminations, see: (a) Emerson, W. S. In Organic
Reactions; Wiley: New York, 1948; Vol. 4, p 174; (b) Moore, M. L. In Organic
Reactions; Wiley: New York, 1949; Vol. 5, p 301; (c) Lane, C. F. Synthesis 1975,
135; (d) Hutchins, R. O.; Natale, N. Org. Prep. Proced. Int. 1979, 11, 201; (e)
Gribble, G. W.; Nutaitis, C. F. Org. Prep. Proced. Int. 1985, 17, 317; (f) Hutchins, R.
O.; Hutchins, M. K. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon: Oxford, 1991; Vol. 8, p 25; (g) Baxter, E. W.; Reitz, A. B. In
Organic Reactions; Wiley: New York, 2002; Vol. 59, p 1.
6. (a) Leuckart, R. Ber. Dtsch. Chem. Ges. 1885, 18, 2341; (b) Wallach, O. Ber. Dtsch.
Chem. Ges. 1891, 24, 3992.
7. Allegretti, M.; Berdini, V.; Cesta, M. C.; Curti, R.; Nicolini, L.; Topai, A.
Tetrahedron Lett. 2001, 42, 4257.
8. González-Sabín, J.; Gotor, V.; Rebolledo, F. Tetrahedron: Asymmetry 2002, 13,
1315.
9. Vahermo, M.; Yli-Kauhaluoma, J.; Suominen, T.; Leinonen, A. Arch. Pharm. 2009,
342, 201.
10. Kitamura, M.; Lee, D.; Hayashi, S.; Tanaka, S.; Yoshimura, M. J. Org. Chem. 2002,
67, 8685.
11. Miriyala, B.; Bhattacharyya, S.; Williamson, J. S. Tetrahedron 2004, 60, 1463.
12. Liu, G.; Kozmina, N. S.; Winn, M.; von Geldern, T. W.; Chiou, W. J.; Dixon, D. B.;
Nguyen, B.; Marsh, K. C.; Opgenorth, T. J. J. Med. Chem. 1999, 42, 3679.
13. Mignonac, M. G. Compt. Rend. 1921, 172, 223.
14. (a) Schwoegler, E. J.; Adkins, H. J. Am. Chem. Soc. 1939, 61, 3499; (b) Winans, C.
F. J. Am. Chem. Soc. 1939, 61, 3564; (c) Robinson, J. C., Jr.; Snyder, H. R. Org.
Synth. 1955, Coll. Vol. 3, 717.
15. Ikenaga, T.; Matsushita, K.; Shinozawa, J.; Yada, S.; Takagi, Y. Tetrahedron 2005,
61, 2105.
5 mg mLÀ1 of ketones 1a–d in methanol; 40 °C; 0.2 mL minÀ1
;
no measurable back-pressure). After the stationary state was
reached (ꢀ8 times dead volume of the column, 40 min), feeding
the reactor with the corresponding ketones 1a–d was continued
for 6 h. The amines 2a–d were isolated from the collected homo-
geneous solutions (Method D, Table 1). In all cases, similar or
higher yields of the amine were obtained compared to the corre-
sponding batch reaction (53% vs 52% for 2a; 68% vs 60% or 65%7
for 2b; 41% vs 38% for 2c and 67% vs 64% for 2d). The reactions
were repeated for ketones 1a–d in a second series of reductions
on the same 10% Pd/C-filled column resulting in the same yields
of products 2a–d. The same catalyst column was used for at
least 56 h of continuous reaction time with no catalyst deactiva-
tion observed. Therefore, the main advantage of the continuous-
flow system with 10% Pd/C-columns is the recyclability and the
efficient, safe and reproducible use of the catalyst for an ex-
tended period of time, thereby resulting in a more environmen-
tally friendly process.
16. Alexander, E. R.; Misegades, A. L. J. Am. Chem. Soc. 1948, 70, 1315.
17. Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic
Synthesis; Wiley: New York, 2001. p 226.
In summary, we have developed new, efficient, and conve-
nient methods for the reductive amination of ketones. The meth-
ods use ammonium formate as the hydrogen source (similarly to
the well known Leuckart reaction), but application of Zn dust or
10% Pd/C-catalyst in methanol eliminates the need for harsh
conditions which can hinder industrial applications. The two
methods are complementary: the Zn dust promoted reactions
gave amines 2e–i (in 37–71% yields) from ketones with a car-
bonyl group at the benzylic position of an aromatic side chain
1e–i, while the 10% Pd/C-catalyzed reactions were more suitable
for the conversion of aliphatic and cycloaliphatic ketones 1a–d
into the corresponding amines 2a–d (in 38–64% yields).
Retention of the homogeneous phase for the 10% Pd/C-catalyzed
transfer hydrogenations of aliphatic and cycloaliphatic ketones 1a–
d allowed the recyclable, efficient, and reproducible use of this cat-
alyst in a continuous-flow reactor.
18. Chi, Y.; Zhou, Y. G.; Zhang, X. J. Org. Chem. 2003, 68, 4120.
19. Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int. Ed. 2005, 44, 7424.
20. Nieto, S.; Dragna, J. M.; Anslyn, E. V. Chem. Eur. J. 2010, 16, 227.
21. Kadyrov, R.; Riermeier, T. H. Angew. Chem., Int. Ed. 2003, 42, 5472.
22. Yun, H.; Kim, B. G. Biosci. Biotechnol. Biochem. 2008, 72, 3030.
23. (a) Truppo, M. D.; Rozzell, J. D.; Moore, J. C.; Turner, N. J. Org. Biomol. Chem.
2009, 7, 395; (b) Truppo, M. D.; Rozzell, J. D.; Turner, N. J. Org. Process Res. Dev.
2010, 14, 234; (c) Truppo, M. D.; Turner, N. J. Org. Biomol. Chem. 2010, 8, 1280.
24. Cho, H.; Iwama, Y.; Sugimoto, K.; Mori, S.; Tokuyama, H. J. Org. Chem. 2010, 75, 627.
25. (a) Kopp, M. Bull. Soc. Chim. Fr. 1954, 1, 628; (b) Lüning, B. Acta Chem. Scand.
1959, 13, 1623; (c) Pedder, D. J.; Fales, H. M.; Jaouni, T.; Blum, M. S.;
MacConnell, J.; Crewe, R. M. Tetrahedron 1976, 32, 2275; (d) Leclerc, G.; Decker,
N.; Schwartz, J. Arzneim. Forsch. 1985, 35, 1357.
26. Abiraj, K.; Gowda, D. C. J. Chem. Res., Synop. 2003, 332.
27. Robin, S.; Rousseau, G. Eur. J. Org. Chem. 2000, 17, 3007.
28. Jochims, J. C. Monatsh. Chem. 1963, 94, 677.
29. Abiraj, K.; Gowda, D. C. Synth. Commun. 2004, 34, 599.
30. Bhattacharyya, S.; Neidigh, K. A.; Avery, M. A.; Williamson, J. S. Synlett 1999,
1781.
31. (a) Tilley, J. W.; Levitan, P.; Lind, J.; Welton, A. F.; Crowley, H. J.; Tobias, L. D.;
O’Donell, M. J. Med. Chem. 1987, 30, 185; (b) Holman, M. W.; Liu, R.; Adams, D.
M. J. Am. Chem. Soc. 2003, 125, 12649; (c) Elger, B.; Huth, A.; Neuhaus, R.;
Ottow, E.; Schneider, H.; Seilheimer, B.; Turski, L. J. Med. Chem. 2005, 48, 4618;
(d) Che, Y.; Datar, A.; Balakrishnan, K.; Zang, L. J. Am. Chem. Soc. 2007, 129,
7234; (e) Yearick, K.; Ekoue-Kovi, K.; Iwaniuk, D. P.; Natarajan, J. K.; Alumasa,
J.; de Dios, A. C.; Roepe, P. D.; Wolf, C. J. Med. Chem. 2008, 51, 1995.
32. Johansson, A.; Lindstedt, E.-L.; Olsson, T. Acta Chem. Scand. 1997, 51, 351.
33. (a) Jas, G.; Kirchning, A. Chem. Eur. J. 2003, 9, 5708; (b) Kirchning, A.; Solodenko,
W.; Mennecke, K. Chem. Eur. J. 2006, 12, 5972; (c) Kockmann, N.; Roberge, D. M.
Chem. Eng. Technol. 2009, 32, 1682.
Acknowledgments
This research was supported by the Hungarian National Office
for Research and Technology (NKFP-07-A2 FLOWREAC). This
work is also related to the scientific program of ‘Development
of quality-oriented and harmonized R+D+I strategy and functional
model at BME’ (TÁMOP-4.2.1/B-09/1/KMR-2010-0002), supported
by the New Hungary Development Plan. The authors thank Dr. A.
Tomin for discussions and her help in the preparation of this
Letter.
34. 1H NMR (500 MHz, CDCl3, d ppm): 1.24 (d, J = 6.5 Hz, 3H, –CH3: meso); 1.32 (d,
J = 6.5 Hz, 3H, –CH3: rac), 1.52 (br s, 4H, NH2, meso and rac); 3.47 (q, J = 6.5 Hz,
1H, –CH: meso), 3.74 (q, J = 6.5 Hz, 1H, –CH: rac), 7.15–7.35 (m, 10H, Ar-H:
meso and rac); [Lit. 1H NMR: Yamaguchi, R.; Kawagoe, S.; Asai, C.; Fujita, L. Org.
Lett. 2008, 10, 181].