Table 2 Hydrogenolysis–hydrogenation of representative compounds
of Ar–O–Ar bonds, cleavage was done at Me/EtO–Ar bonds
(Table 2, No. 5–8).
Substrate (total % conversion)a
Products (% yieldb)
An imperative pronouncement of this study is the obtained
selectivity pattern for H–H of aryl ethers because of the
anisotropic palisade layer of CTAB reverse micelles. The
stability of catalysts and the spatial orientation of the aromatic
alcohol (phenol) appear to show a positive effect on the yield
and selectivity of the particular products, respectively.
4-NCS–cyclohexanol (95),
NO2–cyclohexane (97)
1
2
3
4
(61)
3-MeO–cyclohexanol (88),
cyclohexanol (3), MeO–
cyclohexane (86), MeOH (nqc),
cyclohexane (2),
(60)
Notes and references
3-MeO–cyclohexanol (92),
(58) cyclohexanol (2), MeOH (nq),
cyclohexane (89)
1 E. Furimsky, Appl. Catal., A, 2000, 199, 147–190.
2 G. W. Huber, S. Iborra and A. Corma, Chem. Rev., 2006, 106,
4044–4098; J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius and
B. M. Weckhuysen, Chem. Rev., 2010, 110, 3552–3599.
3 A. L. Marshall and P. J. Alaimo, Chem.–Eur. J., 2010, 16, 4970–4980.
4 E. M. Van Duzee and H. Adkins, J. Am. Chem. Soc., 1935, 57, 147;
G. Stork, J. Org. Chem., 1947, 69, 576; S. Utoh, T. Hirata, H. Oda
and C. Yokokawa, Fuel Process. Technol., 1986, 14, 221;
M. K. Huuska, Polyhedron, 1986, 5, 233–236.
Cyclohexanol (87),
(58)
cyclohexane (89)
Decahydronaphthalene (87),
MeOH (nq)
5
6
7
(60)d
5 A. Maercker, Angew. Chem., Int. Ed. Engl., 1987, 26, 972–989.
6 P. Dabo, A. Cyr, J. Lessard, L. Brossard and H. Me
Chem., 1999, 77, 1225–1229.
´
nard, Can. J.
Decahydronaphthalene (85),
EtOH (nq)
(57)
7 B. Guan, S. Xiang, T. Wu, Z. Sun, B. Wang, K. Zhao and Z. Shi,
Chem. Commun., 2008, 1437–1439; M. Tobisu, T. Shimasaki and
N. Chatani, Angew. Chem., Int. Ed., 2008, 47, 4866–4869; J. W.
Dankwardt, Angew. Chem., Int. Ed., 2004, 43, 2428–2432;
E. Wenkert, E. L. Michelotti, C. S. Swindell and M. Tingoli,
J. Org. Chem., 1984, 49, 4894–4898; E. Wenkert, E. L. Michelotti
and C. S. Swindell, J. Am. Chem. Soc., 1979, 101, 2246–2247.
8 A. G. Sergeev and J. F. Hartwig, Science, 2011, 332, 439–443.
9 D. G. Levine, R. H. Schlosenberg and B. G. Silbernagel, Proc.
Natl. Acad. Sci. U. S. A., 1982, 79, 3365.
Me–cyclohexane (85),
MeOH (nq)
(57)
Me–cyclohexane (82),
MeOH (nq)
8
(58)
a
b
Determined by gas chromatography. Isolated yield, substrate
c
recovered. Not quantified. Each experiment was repeated three
10 B. S. Samant and G. W. Kabalka, Chem. Commun., 2011, 47,
7236–7238; B. S. Samant and S. S. Bhagwat, Appl. Catal., A, 2011,
394, 191–194.
d
times. AlMe3 (1 equiv.).
11 B. S. Samant and M. G. Sukhthankar, Bioorg. Med. Chem. Lett.,
2011, 21, 1015–1018; B. S. Samant and S. S. Bhagwat, Chin. J.
Catal., 2011, 32, 231–234; B. S. Samant and M. G. Sukhthankar,
Med. Chem., 2009, 5, 293–300; B. S. Samant, Y. P. Saraf and
S. S. Bhagwat, J. Colloid Interface Sci., 2006, 302, 207–213.
12 G. W. Kabalka, J. F. Green, M. M. Goodman, J. T. Maddox and
S. J. Lambert, Radiopharmaceutical synthesis via boronated polymers, in
Current Topics in the Chemistry of Boron, ed. G. W. Kabalka, The Royal
Society of Chemistry, Cambridge, UK, 1994, pp. 199–203;
G. W. Kabalka, Acc. Chem. Res., 1984, 17, 215–221; G. W. Kabalka,
J. Labelled Compd. Radiopharm., 2007, 50, 888–894; H. M. Schuller and
G. W. Kabalka, US Pat. Appl. Pub., 2 006 067 879, 2006; G. W.
Kabalka and M.-L. Yao, J. Organomet. Chem., 2009, 694, 1638–1641;
L. Yong, M.-L. Yao, J. F. Green, H. Kelly and G. W. Kabalka, Chem.
Commun., 2010, 46, 2623–2625; Y. Li, M.-L. Yao, H. Kelly, J. F. Green
and G. W. Kabalka, J. Labelled Compd. Radiopharm., 2011, 54,
173–174.
cleavage of the C–O bond took place next to the aryl ring
containing electron withdrawing functionality. For 3,30-oxybis-
(methoxybenzene), selectivity in hydrogenolysis was maintained
towards the aromatic C–O bond (Table 2, No. 2). The formation
of decahydronaphthalene from 2-alkoxy-naphthalenes (Table 2,
No. 5 and 6) reveals selectivity in H–H of the aromatic C–O bond.
The interesting formation of methyl-cyclohexane from benzyl
ethers (Table 2, No. 7 and 8) indicates the preference for cleavage
towards more electron dense species. This series clearly
indicate the selectivity pattern including (i) selectivity towards
arene hydrogenation, (ii) selectivity towards aromatic C–O
bond cleavage, (iii) selectivity towards cleavage of Ar–O–Ar in
the presence of Ar–OMe (Table 2, No. 2 and 3). In the absence
13 B. S. Samant and S. S. Bhagwat, J. Dispersion Sci. Technol., 2011,
DOI: 10.1080/01932691.2011.596325; B. S. Samant and S. S. Bhagwat,
Monatsh. Chem., 2012, 143, 1039–1044.
c
8660 Chem. Commun., 2012, 48, 8658–8660
This journal is The Royal Society of Chemistry 2012