Communication
ChemComm
The oxidation of cyclohexane has been proven to be initiated Conflicts of interest
by the formation of cyclohexyl hydroperoxide radicals and sub-
sequently the homolytic cleavage of cyclohexyl hydroperoxide to
There are no conflicts to declare.
form free radicals. Therefore, the role of a catalyst in this
reaction can be related to the acceleration of the generation
Notes and references
1 P. Claus, Appl. Catal., A, 2005, 291, 222–229.
2 T. Takei, T. Akita, I. Nakamura, T. Fujitani, M. Okumura,
K. Okazaki, J. Huang, T. Ishida and M. Haruta, Adv. Catal., 2012,
55, 1–126.
3 A. S. Hashmi and G. J. Hutchings, Angew. Chem., Int. Ed., 2006, 45,
7896–7936.
of hydroperoxide radicals.25 The role of a radical intermediate
in initiating the aerobic oxidation of cyclohexane has been
confirmed by catalytic tests in the presence of an initiator (see
Fig. S9 and S10, ESI†).26 It has been observed in different
systems that the activation mechanism of O2 on metal particles
is related to the particle size. In the case of Au nanoparticles, O2
is activated into atomic oxygen species at T 4 80 1C. While in
the case of Au clusters, O2 can be activated and transformed
into radical-type species on Au clusters.9,27 The different cata-
lytic behavior of Au nanoclusters and nanoparticles for the
aerobic oxidation of cyclohexane is then probably related to the
size-dependent O2 activation mechanism on the Au species.
We also study the stability of Au clusters for the oxidation of
KA-oil. As shown in Fig. S5 (ESI†), the catalyst shows good
recyclability during three consecutive tests. The conversion and
yields of different products are similar for the three tests. As
presented in Fig. S11 (ESI†), the presence of Au nanoclusters in
the used catalyst is confirmed using the electron microscopy
images and the agglomeration of the Au species into the Au
nanoparticles is not observed, suggesting the good stability of
the Au nanoclusters encapsulated in MCM-22.
4 L. Liu and A. Corma, Chem. Rev., 2018, 118, 4981–5079.
5 M. Valden, X. Lai and D. W. Goodman, Science, 1998, 281,
1647–1650.
6 B. Hvolbæk, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H.
Christensen and J. K. Nørskov, Nano Today, 2007, 2, 14–18.
7 J. Oliver-Meseguer, J. R. Cabrero-Antonino, I. Dominguez, A. Leyva-
Perez and A. Corma, Science, 2012, 338, 1452–1455.
8 A. Corma, P. Concepcion, M. Boronat, M. J. Sabater, J. Navas,
M. J. Yacaman, E. Larios, A. Posadas, M. A. Lopez-Quintela,
D. Buceta, E. Mendoza, G. Guilera and A. Mayoral, Nat. Chem.,
2013, 5, 775–781.
9 M. Boronat, A. Leyva-Perez and A. Corma, Acc. Chem. Res., 2014, 47,
834–844.
10 S. Yamazoe, K. Koyasu and T. Tsukuda, Acc. Chem. Res., 2014, 47,
816–824.
11 R. Jin, C. Zeng, M. Zhou and Y. Chen, Chem. Rev., 2016, 116,
10346–10413.
12 J. C. Fierro-Gonzalez, Y. Hao and B. C. Gates, J. Phys. Chem. C, 2007,
111, 6645–6651.
13 M. T. Bore, H. N. Pham, E. E. Switzer, T. L. Ward, A. Fukuoka and
A. K. Datye, J. Phys. Chem. B, 2005, 109, 2873–2880.
14 J. Mielby, J. O. Abildstrom, F. Wang, T. Kasama, C. Weidenthaler
and S. Kegnaes, Angew. Chem., Int. Ed., 2014, 53, 12513–12516.
15 T. Otto, S. I. Zones and E. Iglesia, J. Catal., 2016, 339, 195–208.
In summary, we have reported the synthesis of Au@MCM-22
materials containing subnanometric Au clusters in an MCM-22
zeolite by incorporating Au species during the transformation 16 L. Liu, U. Diaz, R. Arenal, G. Agostini, P. Concepcion and A. Corma,
Nat. Mater., 2017, 16, 132–138.
17 L. Liu, D. N. Zakharov, R. Arenal, P. Concepcion, E. A. Stach and
of a 2D zeolite into a 3D structure. These highly stable Au
clusters can serve as active species for the aerobic oxidation of
A. Corma, Nat. Commun., 2018, 9, 574.
cyclohexane into cyclohexanol and cyclohexanone without the 18 Y. Xue, X. Li, H. Li and W. Zhang, Nat. Commun., 2014, 5, 4348.
19 E. Pensa, E. Cortes, G. Corthey, P. Carro, C. Vericat, M. H. Fonticelli,
presence of a radical initiator.
G. Benitez, A. A. Rubert and R. C. Salvarezza, Acc. Chem. Res., 2012,
45, 1183–1192.
This work has been supported by the European Union through
the European Research Council (grant ERC-AdG-2014-671093, 20 A. Shivhare, D. M. Chevrier, R. W. Purves and R. W. J. Scott, J. Phys.
Chem. C, 2013, 117, 20007–20016.
21 J. T. Miller, A. J. Kropf, Y. Zha, J. R. Regalbuto, L. Delannoy, C. Louis,
SynCatMatch) and the Spanish government through the ‘‘Severo
Ochoa Program’’ (SEV-2016-0683). The authors also thank the
E. Bus and J. A. van Bokhoven, J. Catal., 2006, 240, 222–234.
Microscopy Service of UPV for kind help with TEM and STEM 22 M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz and R. Jin, J. Am.
Chem. Soc., 2008, 130, 5883–5885.
23 I. Hermans, Liquid Phase Aerobic Oxidation Catalysis-Industrial Appli-
measurements. Mr J. A. Gaona is greatly acknowledged for his very
helpful assistance on the catalytic studies. The XAS data were
cations and Academic Perspectives, ed. S. Stahl and P. Alsters, 2015.
acquired at European Synchrotron Radiation Facility. The HAADF- 24 B. P. C. Hereijgers and B. M. Weckhuysen, J. Catal., 2010, 270,
16–25.
HRSTEM studies were conducted in the Laboratorio de Micro-
scopias Avanzadas (LMA) at the Instituto de Nanociencia de
25 I. Hermans, P. A. Jacobs and J. Peeters, Chem. – Eur. J., 2006, 12,
4229–4240.
Aragon (INA)-Universidad de Zaragoza (Spain), Spanish ICTS 26 M. Conte, X. Liu, D. M. Murphy, K. Whistonb and G. J. Hutchings,
Phys. Chem. Chem. Phys., 2012, 14, 16279–16285.
27 L. Qian, Z. Wang, E. V. Beletskiy, J. Liu, H. J. Dos Santos, T. Li,
National facility. R. A. gratefully acknowledges the support from
the Spanish Ministry of Economy and Competitiveness (MINECO)
M. D. Rangel, M. C. Kung and H. H. Kung, Nat. Commun., 2017,
through project grant MAT2016-79776-P (AEI/FEDER, UE).
8, 14881.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2018