Communication
Green Chemistry
using 300 W Mg Kα radiation. The base pressure was about
9 L. N. Zhao, Y. L. Dong, X. L. Zhan, Y. Cheng, Y. J. Zhu,
F. L. Yuan and H. G. Fu, Catal. Lett., 2012, 142, 619–626.
−9
3
× 10 mbar. The binding energies were referenced to the C 1s
line at 284.8 eV from adventitious carbon. FT-IR spectra were 10 Y. Y. Gu, X. H. Zhao, G. R. Zhang, H. M. Ding and
recorded on a Bruker Tensor 27 spectrometer with a resolution Y. K. Shan, Appl. Catal., A, 2007, 328, 150–155.
of 2 cm− and consisted of 32 scans. Brunauer–Emmett–Teller 11 H. Kanzaki, T. Kitamura, R. Hamada, S. Nishiyama and
BET) surface areas and pore volumes were measured on a S. Tsuruya, J. Mol. Catal. A: Chem., 2004, 208, 203–211.
Micromeritics ASAP 2020 sorptometer by using nitrogen 12 Y. Ichihashi, T. Taniguchi, H. Amano, T. Atsumi,
1
(
adsorption at 77 K. The loading content of V in the catalysts
was determined using ICP-AES (VISTAMPX).
S. Nishiyama and S. Tsuruya, Top. Catal., 2008, 47, 98–100.
13 C. J. Zhou, J. Wang, Y. Leng and H. Q. Ge, Catal. Lett.,
2
010, 135, 120–125.
4 J. Q. Chen, S. Gao, J. Li and Y. Lv, Chin. J. Catal., 2011, 32,
446–1451.
5 S. Q. Song, H. X. Yang, R. C. Rao, H. D. Liu and
A. M. Zhang, Appl. Catal., A, 2010, 375, 265–271.
6 S. Q. Song, S. J. Jiang, R. C. Rao, H. X. Yang and
A. M. Zhang, Appl. Catal., A, 2011, 401, 215–219.
7 P. Arab, A. Baeiei, A. Koolivand and G. Mohammadi
Ziarani, Chin. J. Catal., 2011, 32, 258–263.
8 Y. K. Zhong, G. Y. Li, L. F. Zhu, Y. Yan, G. Wu and
C. W. Hu, J. Mol. Catal. A: Chem., 2007, 272, 169–173.
9 S. Q. Song, H. X. Yang, R. C. Rao, H. D. Liu and
A. M. Zhang, Catal. Commun., 2010, 11, 783–787.
0 J. Q. Xu, H. H. Liu, R. G. Yang, G. Y. Li and C. W. Hu,
Chin. J. Catal., 2012, 33, 1622–1630.
1 L. Yu, C. Falco, J. Weber, R. J. White, J. Y. Howe and
M.-M. Titirici, Langmuir, 2012, 28, 12373–12383.
2 M.-M. Titirici, R. J. White, C. Falco and M. Sevilla, Energy
Environ. Sci., 2012, 5, 6796–6822.
1
1
1
1
1
1
2
2
2
2
Catalytic tests
1
The hydroxylation of benzene was performed in a Teflon-lined
stainless-steel reactor (20 mL) that was equipped with a
pressure gauge, thermocouple, gas-inlet valve, magnetic
stirrer, and an electric heater with a controller. In a typical
experiment, 0.025 g of catalyst, 0.80 g of ascorbic acid, and
1
.0 mL of benzene were added to 2.0 g of acetonitrile succes-
sively. After the system was charged with 3.0 MPa of O at
2
room temperature, the hydroxylation reaction was conducted
at 80 °C for the desired time under vigorous stirring. After the
reaction, toluene was added into the product mixture as an
internal standard for product analysis. The mixture was
analyzed using a gas chromatograph (GC) of Agilent 6820
equipped with a flame ionization detector (FID). The products
of phenol and hydroquinone were detected using GC in this
reaction system. The yield of phenol was calculated as: (mole
of formed phenol)/(mole of initial benzene) × 100%.
3 M. Y. Xing, D. Y. Qi, J. L. Zhang and F. Chen, Chem.–Eur. J.,
2011, 17, 11432–11436.
Acknowledgements
24 G. B. Yu, B. Sun, Y. Pei, S. H. Xie, S. R. Yan, M. H. Qiao,
K. N. Fan, X. X. Zhang and B. N. Zong, J. Am. Chem. Soc.,
The authors thank the National Natural Science Foundation of
China (21273253, 20932002, 21021003) and Chinese Academy
of Sciences (KJCX2.YW.H30) for financial support.
2
009, 132, 935–937.
2
2
2
5 P. Makowski, R. D. Cakan, M. Antonietti, F. Goettmann
and M. M. Titirici, Chem. Commun., 2008, 999–1001.
6 N. Hoffmann, E. Löffler, N. A. Breuer and M. Muhler,
ChemSusChem, 2008, 1, 393–396.
7 G. D. Ding, W. T. Wang, T. Jiang, B. X. Han, H. L. Fan and
G. Y. Yang, ChemCatChem, 2013, 5, 192–200.
Notes and references
1
L. Balducci, D. Bianchi, R. Bortolo, R. D’Aloisio, M. Ricci, 28 X. M. Sun and Y. D. Li, Angew. Chem., Int. Ed., 2004, 43,
R. Tassinari and R. Ungarelli, Angew. Chem., Int. Ed., 2003, 3827–3831.
15, 5087–5090.
1
29 Q. Wang, H. Li, L. Q. Chen and X. J. Huang, Carbon, 2001,
39, 2211–2214.
2
3
4
5
6
7
8
D. Bianchi, R. Bortolo, R. Tassinari, M. Ricci and
R. Vignola, Angew. Chem., Int. Ed., 2000, 112, 4491–4493.
P. Borah, X. Ma, K. T. Nguyen and Y. Zhao, Angew. Chem.,
Int. Ed., 2012, 51, 7756–7761.
R. Bal, M. Tada, T. Sasaki and Y. Iwasawa, Angew. Chem.,
Int. Ed., 2005, 45, 448–452.
30 X. M. Sun and Y. D. Li, Angew. Chem., Int. Ed., 2004, 43,
597–601.
31 N. Baccile, G. Laurent, F. Babonneau, F. Fayon,
M. M. Titirici and M. Antonietti, J. Phys. Chem. C, 2009,
113, 9644–9654.
A. Kubacka, Z. Wang, B. Sulikowski and V. Cortés Corberán, 32 J. Zhang and E. Weitz, ACS Catal., 2012, 2, 1211–1218.
J. Catal., 2007, 250, 184–189.
33 F. Jiang, Q. J. Zhu, D. Ma, X. M. Liu and X. W. Han, J. Mol.
Catal. A: Chem., 2011, 334, 8–12.
34 C. Yao, Y. Shin, L. Q. Wang, C. F. Windisch, W. D. Samuels,
B. W. Arey, C. Wang, W. M. Risen and G. J. Exarhos, J. Phys.
Chem. C, 2007, 111, 15141–15145.
J. B. Taboada, E. J. M. Hensen, I. W. C. E. Arends, G. Mul
and A. R. Overweg, Catal. Today, 2005, 110, 221–227.
A. S. Kharitonov, V. I. Sobolev and G. I. Panov, Russ. Chem.
Rev., 1992, 61, 1130.
H. Xia, K. Sun, Z. Feng, W. X. Li and C. Li, J. Phys. Chem. C, 35 H. Mehdi, V. Fábos, R. Tuba, A. Bodor, L. T. Mika and
008, 112, 9001–9005. I. T. Horváth, Top. Catal., 2008, 48, 49–54.
2
Green Chem.
This journal is © The Royal Society of Chemistry 2013