Organic Letters
Letter
conjugated substitution yields phenol II and vinylcobalamin 3
possessing a Co−C bond that is easily cleaved under
photochemical or thermal conditions. On the other hand, the
isomerization reaction is believed to involve cobalamin hydride
17, resulting from the reaction of supernucleophilic Co(I)-form
2 with MeOH. Such observations remain in good agreement
with those of Norton, who reported the facile isomerization of
double bonds mediated by cobalt hydride,11 and of Hisaeda and
Shimakoshi, who recently proposed a mechanism of hydrogen
evolution in which vitamin B12 derived cobyrinic acid hydride is
involved.12 The alkylcobalamin III formed undergoes dehy-
drocobaltation generating isomerized product IV and hydrido-
cobalamin (Co(III)-H) 17 that upon reduction regenerates the
catalyst or reacts with the next molecule of (allyloxy)arene I.
In summary, native vitamin B12 1 can be reduced
photochemically to its catalytically active Co(I)-form 2 and as
such catalyzes the cleavage of the C−O bond in allyl-aryl ethers.
The photochemically induced reaction tolerates starting
materials bearing various functional groups, including: −CN,
−CO2Me, −OMe, and even very reactive −CHO. The reaction
seems also promising for deprotection of aliphatic alcohols.
Additionally, for less reactive substrates, the Zn/NH4Cl
reducing system can be used. Newly developed methodology
proved chemoselective; only O-allyl-ethers are cleaved while O-
benzyl- and O-Me remained intact. Compared to known
processes our methods do possess advantages, such as mild
photochemical conditions, the exclusion of harsh acid or bases,
and elimination of precious metal catalysts, e.g. Pd.
REFERENCES
■
(1) For vitamin B12 bioactivity and structure, see reviews:
(a) Krautler, B.; Golding, B. T.; Arigoni, D. Vitamin B12 and B12-
̈
Proteins; Wiley-VCH: 2008. (b) Banerjee, R. Chemistry and
́
Biochemistry of B12; John Wiley&Sons: 1999. (c) o Proinsias, K.;
Giedyk, M.; Gryko, D. Chem. Soc. Rev. 2013, 42, 6605−6619.
(d) Brown, K. L. Chem. Rev. 2005, 105, 2075−2150. (e) Zelder, F.
Chem. Commun. 2015, 51, 14004−14017. (f) Gruber, K.; Puffer, B.;
Krautler, B. Chem. Soc. Rev. 2011, 40, 4346−4363.
̈
(2) Reviews: (a) Giedyk, M.; Goliszewska, K.; Gryko, D. Chem. Soc.
Rev. 2015, 44, 3391−3404. (b) Hisaeda, Y.; Nishioka, T.; Inoue, Y.;
Asada, K.; Hayashi, T. Coord. Chem. Rev. 2000, 198, 21−25.
(c) Scheffold, R.; Abrecht, S.; Orlinski, R.; Ruf, H.-R.; Stamouli, P.;
Tinembart, O.; Walder, L.; Weymuth, C.; Orflnski, R.; Bern, U.; Bern,
C. Pure Appl. Chem. 1987, 59, 363−372. (d) Hisaeda, Y.; Shimakoshi,
H. Handbook of Porphyrin Science; World Scientific Publishing Co.:
2010.
(3) Olefin alkylation: Giedyk, M.; Goliszewska, K.; o
Gryko, D. Chem. Commun. 2016, 52, 1389−1392.
(4) Formation of esters and amides from trichlorinated organic
compounds: (a) Shimakoshi, H.; Hisaeda, Y. Angew. Chem., Int. Ed.
2015, 54, 15439−15443. (b) Shimakoshi, H.; Luo, Z.; Inaba, T.;
Hisaeda, Y. Dalton Trans. 2016, 45, 10173−10180.
(5) (a) Somasundaran, P. Electrochemical Reactions in Microemulsions;
Encyclopedia of Surface and Colloid Science; CRC Press: 2006.
(b) Schrauzer, G. N.; Deutsch, E. J. Am. Chem. Soc. 1969, 91, 3341−
3350. (c) Shey, J.; McGinley, Ch. M.; McCauley, K. M.; Dearth, A. S.;
Young, B. T.; van der Donk, W. A. J. Org. Chem. 2002, 67, 837−846.
(6) Whiting, D. A. Nat. Prod. Rep. 2001, 18, 583−606.
(7) For reviews, see: (a) Weissman, S. A.; Zewge, D. Tetrahedron
2005, 61, 7833−7863. (b) Greene, T. W.; Wuts, P. G. M. Protective
Groups in Organic Synthesis; Wiley, 2006;. (c) Kocienski, P. J. Protecting
Groups; Thieme: 2000.
́
Proinsias, K.;
Mechanistic investigations imply that photochemically
formed vitamin B12 “supernucleophilic” Co(I)-form 2 is an
active form of the catalyst, and as such it reacts with O-
allylphenols in the SN2′ manner. Moreover, our studies strongly
support previous reports on the involvement of a cobalt-
hydride intermediate in the isomerization of the double bond,
though direct evidence has not yet been found.
(8) (a) Shimakoshi, H.; Hisaeda, Y. ChemPlusChem 2017, 82, 18−29.
and ref therein (b) Tahara, K.; Mikuriya, K.; Masuko, T.; Kikuchi, J.;
Hisaeda, Y. Supramol. Chem. 2016, 28, 141−150.
(9) For reviews, see: (a) Rajasekharan Pillai, V. N. Synthesis 1980,
1980, 1−26. (b) Pelliccioli, A. P.; Wirz, J. Photochem. Photobiol. Sci.
̌
́
2002, 1, 441−458. (c) Klan, P.; Solomek, T.; Bochet, Ch. G.; Blanc,
A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Chem. Rev.
2013, 113, 119−191.
ASSOCIATED CONTENT
* Supporting Information
■
S
(10) For reviews, see: (a) Marinescu, S. C.; Winkler, J. R.; Gray, H. B.
Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 15127−15131. (b) Artero, V.;
Chavarot-Kerlidou, M.; Fontecave, M. Angew. Chem., Int. Ed. 2011, 50,
7238−7266.
The Supporting Information is available free of charge on the
(11) Li, G.; Kuo, J. L.; Han, A.; Abuyuan, J. M.; Young, L. C.;
Norton, J. R.; Palmer, J. H. J. Am. Chem. Soc. 2016, 138, 7698−7704.
(12) Shimakoshi, H.; Hisaeda, Y. ChemPlusChem 2014, 79, 1250−
1253.
1
Experimental procedures, optimization studies, H and
13C NMR spectra for all new compounds (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
‡These authors contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The National Science Centre, Grants SYMFONIA (DEC
2014/12/W/ST5/00589), SONATA 2013/11/D/ST5/02956;
the Foundation for Polish Science grant (START 31.2016) for
M.G.
D
Org. Lett. XXXX, XXX, XXX−XXX