CPD: Surrogate of the Azobenzene Photochromic Unit
A R T I C L E S
Scheme 1. Synthetic Scheme for (1-Cyclohexenyl)phenyldiazine
(CPD) and Its Derivatives
arylazoalkenes with different ring sizes, too, which are prevented
in the parent compound azobenzene and could be exploited for
later applications.
Arylazoalkenes can be efficiently prepared from carbonyl
derivatives bearing a good leaving group X on the carbon atom
adjacent to the carbonyl function. The addition of arylhydrazine
gives the corresponding arylhydrazone, a labile intermediate,
that affords arylazoalkene by treatment with a mild base that
promotes a clean 1,4-elimination of HX.19 Typical reactions of
arylazoalkenes are: (i) the conjugate addition of nucleophiles19a,20
to the azo-ene moiety and (ii) the 4 + 2 cycloaddition reactions
with a variety of carbon-carbon dienophiles and heterodieno-
files, leading to the formation of six-membered heterocyclic
compounds.21
Here, we report the results of an investigation on the photo-
physical and photochemical properties of CPD, carried out by
electronic spectroscopic measurements and photochemical
experiments in solution and by computational methods. In
particular, fully unconstrained CASPT2//CASSCF/6-31G* mini-
mum energy path computations have been used to elucidate the
multistate dynamics and reaction coordinates, unveiling CPD’s
photochemical reactivity, as well as the energetics involved, and
have achieved a full rationale of its photochemical behavior.
For this purpose, the ground- and excited-state properties of
CPD in the singlet manifold as well as in the triplet T1 state,
with specific reference to its E / Z isomerization reactions,
are discussed in comparison to those of azobenzene.
of more powerful (time-resolved) spectroscopic and computa-
tional techniques, the photoisomerization of azobenzene has
been the subject of further detailed investigations with experi-
mental17 and theoretical17f,18 approaches.
While it is well-known1,2 that the photochemical behavior of
azobenzene derivatives is strongly influenced by the substituents
on the phenyl rings, not much information is available on the
photoreactivity of azobenzene-type compounds in which the
structure of the rings is changed. In particular, we are interested
to see if and how the spectroscopic and photochemical properties
change when the π-electron system adjacent to the -NdN-
double bond is reduced in size and the aromaticity has been
eventually removed in one of the two rings. For this reason,
we have synthesized and studied (1-cyclohexenyl)phenyldiazene
(CPD, Chart 1), a species formally derived from azobenzene in
which one of the phenyl rings is replaced by a cyclohex-1-ene
moiety. Besides representing an azobenzene-type compound
with reduced π-conjugation and aromaticity, its appeal resides
also in its new funtionalization potentialities as revealed by its
synthetic protocol (Scheme 1) that allows the preparation of
2. Experimental and Computational Details
(9) For representative examples, see: (a) Archut, A.; Vo¨gtle, F.; De Cola, L.;
Azzellini, G. C.; Balzani, V.; Ramanujam, P. S.; Berg, R. H. Chem. Eur.
J. 1998, 4, 699. (b) Junge, D. M.; McGrath, D. V. J. Am. Chem. Soc. 1999,
121, 4912. (c) Sebastian, R. M.; Blais, J. C.; Caminade, A. M.; Majoral,
J.-P. Chem. Eur. J. 2002, 8, 2172. (d) Uda, M.; Momotake, A.; Arai, T.
Photochem. Photobiol. Sci. 2003, 2, 845. (e) Nithyanandhan, J.; Jayaraman,
N.; Davis, R.; Das, S. Chem. Eur. J. 2004, 10, 689.
(10) (a) Balzani, V.; Scandola, F. Supramolecular Photochemistry; Horwood:
Chichester, 1991; Chapter 7. (b) Shinkai, S. In Molecular Switches; Feringa,
B. L., Ed.; Wiley-VCH: Weinheim, 2001; Chapter 9.
2.1. Experimental Section. Reagents and dry solvents were
purchased from Fluka, unless otherwise noted. E-Azobenzene was
purchased from Aldrich.
The absorption and luminescence spectra were recorded with a
Varian Cary 50 spectrophotometer and a LS 50 spectrofluorimeter,
respectively, on air-equilibrated acetonitrile or cyclohexane (Merck
Uvasol) solutions at room temperature, with concentrations ranging from
1 × 10-5 to 1 × 10-4 M, contained in 1-cm quartz cells. Experimental
errors: wavelengths, (1 nm; molar absorption coefficients, (5%.
Photochemical reactions were performed on the same solutions,
thoroughly stirred, by using the Xe lamp (150 W) of a Perkin-Elmer
650-10S spectrofluorimeter. The monochromator of the instrument
(bandpass ) 10 nm) was employed for the selection of the desired
irradiation wavelength. The number of incident photons, determined
by ferrioxalate actinometry22 in its micro version,23 was between 10-8
and 10-7 Nhν/min. The E f Z quantum yields for ππ* (λirr ) 325 nm
for CPD and 345 nm for AB; wavelengths of maximum conversion to
the Z isomer) and nπ* (λirr ) 430 nm) irradiation were determined
from the disappearance of the ππ* absorption band of the reactant at
low conversion percentages (<10%; if necessary, extrapolation to t )
(11) For early, representative examples, see: (a) Ueno, A.; Yoshimura, H.; Saka,
R.; Osa, T. J. Am. Chem. Soc. 1979, 101, 2779. (b) Shinkai, S.; Nakaji, T.;
Nishida, Y.; Ogawa, T.; Manabe, O. J. Am. Chem. Soc. 1980, 102, 5860.
(12) Representative examples: (a) Shinkai, S.; Manabe, O. Top. Curr. Chem.
1984, 121, 67. (b) Ritter, G.; Ha¨felinger, G.; Lu¨ddecke, E.; Rau, H. J. Am.
Chem. Soc. 1989, 111, 4627. (c) Tamaoki, N.; Koseki, K.; Yamaoka, T.
Angew. Chem., Int. Ed. Engl. 1990, 29, 105. (d) Vo¨gtle, F.; Mu¨ller, W.
M.; Mu¨ller, U.; Bauer, M.; Rissanen, K. Angew. Chem., Int. Ed. Engl. 1993,
32, 1295. (e) Ro¨ttger, O.; Rau, H. Mol. Cryst. Liq. Cryst. Sci. Technol.,
Sect. A 1994, 246, 143. (f) Bencini, A.; Bernardo, M. A.; Bianchi, A.;
Ciampolini, M.; Fusi, V.; Nardi, N.; Parola, A. J.; Pina, F.; Valtancoli, B.
J. Chem. Soc., Perkin Trans. 2 1998, 413. (g) Cisnetti, F.; Ballardini, R.;
Credi, A.; Gandolfi, M. T.; Masiero, S.; Negri, F.; Pieraccini, S.; Spada,
G. P. Chem. Eur. J. 2004, 10, 2011.
(13) Kawata, S.; Kawata, Y. Chem. ReV. 2000, 100, 1777.
(14) (a) Qu, D.-H.; Wang, Q.-C.; Tian, H. Angew. Chem., Int. Ed. 2005, 44,
5296. (b) Qu, D.-H.; Wang, Q.-C.; Ma, X.; Tian, H. Chem. Eur. J. 2005,
11, 5929.
(15) Balzani, V.; Credi, A.; Venturi, M. Molecular DeVices and Machines: A
Journey Into the Nano World; Wiley-VCH: Weinheim, 2003.
(16) For recent examples of optomechanical devices based on azobenzene, see
ref 14 and: (a) Hugel, T.; Holland, N. B.; Cattani, A.; Moroder, L.; Seitz,
M.; and Gaub, H. E. Science 2002, 296, 1103. (b) Ji, H.-F.; Feng, Y.; Xu,
X.; Purushotham, V.; Thundat, T.; Brown, G. M. Chem. Commun. 2004,
2532. (c) Wang, Q.-C.; Qu, D.-H.; Ren, J.; Chen, K.; Tian, H. Angew.
Chem., Int. Ed. 2004, 43, 2661. (d) Muraoka, T.; Kinbara, K.; Aida, T.
Nature 2006, 440, 512.
(17) (a) Rau, H.; Luddecke, E. J. Am. Chem. Soc. 1982, 104, 1620. (b) Fujino,
T.; Tahara, T. J. Phys. Chem. A 2000, 104, 4203. (c) Fujino, T.; Arzhantsev,
S. Y.; Tahara, T. J. Phys. Chem. A 2001, 105, 8123. (d) Fujino, T.;
Arzhantsev, S. Y.; Tahara, T. Bull. Chem. Soc. Jpn. 2002, 75, 1031. (e)
Hirose, Y.; Yui, H.; Sawada, T. J. Phys. Chem. A 2002, 106, 3067. (f)
Schultz, T.; Quenneville, J.; Levine, B.; Toniolo, A.; Martinez, T. J.;
Lochbrunner, S.; Schmitt, M.; Shaffer, J. P.; Zgierski, M. Z.; Stolow, A. J.
Am. Chem. Soc. 2003, 125, 8098. (g) Satzger, H.; Root, C.; Braun, M. J.
Phys. Chem. A 2004, 108, 6265. (h) Chang, C.-W.; Lu, Y.-C.; Wang, T.-
T.; Diau, E. W.-G. J. Am. Chem. Soc. 2004, 126, 10109. (i) Lu, Y.-C.;
Diau, E. W.-G.; Rau, H. J. Phys. Chem. A 2005, 109, 2090.
(18) (a) Cattaneo, P.; Persico, M. Phys. Chem. Chem. Phys. 1999, 1, 4739. (b)
Ishikawa, T.; Noro, T.; Shoda, T. J. Chem. Phys. 2001, 115, 7503. (c)
Gagliardi, L.; Orlandi, G.; Bernardi, F.; Cembran, A.; Garavelli, M. Theor.
Chem. Acc. 2004, 111, 363. (d) Diau, E. W.-G. J. Phys. Chem. A 2004,
108, 950. (e) Cembran, A.; Bernardi, F.; Garavelli, M.; Gagliardi, L.;
Orlandi, G. J. Am. Chem. Soc. 2004, 126, 3234. (f) Ciminelli, C.; Granucci,
G.; Persico, M. Chem. Eur. J. 2004, 10, 2327. (g) Tiago, M. L.; Ismail-
Beigi, S.; Louie, S. G. J. Chem. Phys. 2005, 122, 94311. (h) Ciminelli, C.;
Granucci, G.; Persico, M. J. Chem. Phys. 2005, 123, 174317.
(19) (a) Caglioti, L.; Rosini, G.; Rossi, F. J. Am. Chem. Soc. 1966, 88, 3865.
(b) Hassner, A.; Catsoulacos, P. J. Chem. Soc., Chem. Commun. 1967,
121. (c) Broda, S.; Simon, H. Chem. Ber. 1969, 102, 3647. (d) Buckingham,
J.; Guthrie, R. D. J. Chem. Soc. (C) 1968, 3079.
(20) Attanasi, O. A.; Filippone, P. Synlett 1997, 1128 and references cited therein.
(21) Bonini, B. F.; Maccagnani, G.; Mazzanti, G.; Rosini, G.; Foresti, E. J.
Chem. Soc., Perkin Trans. I 1981, 2322 and references therein.
(22) Hatchard, C. G.; Parker, C. A. Proc. R. Soc. London A 1956, 253, 518.
(23) Fischer, E. EPA Newsletter 1984, 20, 33.
9
J. AM. CHEM. SOC. VOL. 129, NO. 11, 2007 3199