Communications
Liu, E. B. Pak, B. Singh, C. M. Jensen, A. S. Goldman, J. Am.
and using 1 (0.076 mg from a standard solution) (ketone/
catalyst = 100000:1).
Chem. Soc. 1999, 121, 4086; f) P. Dani, T. Karlen, R. A. Gossage,
S. Gladiali, G. van Koten, Angew. Chem. 2000, 112, 759; Angew.
Chem. Int. Ed. 2000, 39, 743; g) D. Conner, K. N. Jayaprakash,
T. R. Cundari, T. B. Gunnoe, Organometallics 2004, 23, 2724;
h) D. Amoroso, A. Jabri, G. P. A. Yap, D. G. Gusev, E. N.
dos Santos, D. E. Fogg, Organometallics 2004, 23, 4047.
[3] T. Naota, H. Takaya, S.-I. Murahashi, Chem. Rev. 1998, 98, 2599.
[4] a) G. Zassinovich, G. Mestroni, S. Gladiali, Chem. Rev. 1992, 92,
1051; b) R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97;
c) S. Gladiali, G. Mestroni in Transition Metals for Organic
Synthesis, Vol. 2 (Eds.: M. Beller, C. Bolm), Wiley-VCH,
Weinheim, 1998, p. 97; d) R. Noyori, M. Yamakawa, S.
Hashiguchi, J. Org. Chem. 2001, 66, 7931; e) O. Pàmies; J. E.
Bäckvall, Chem. Eur. J. 2001, 7, 5052; f) J. E. Bäckvall, J.
Organomet. Chem. 2002, 652, 105; g) S. E. Clapham, A. Had-
zovic, R. H. Morris, Coord. Chem. Rev. 2004, 248, 2201.
[5] a) W. Baratta, P. Da Ros, A. Del Zotto, A. Sechi, E. Zangrando,
P. Rigo, Angew. Chem. 2004, 116, 3668; Angew. Chem. Int. Ed.
2004, 43, 3584; b) W. Baratta, A. Del Zotto, G. Esposito, A.
Sechi, M. Toniutti, E. Zangrando, P. Rigo, Organometallics 2004,
23, 6264; c) W. Baratta, E. Herdtweck, K. Siega, M. Toniutti, P.
Rigo, Organometallics 2005, 24, 1660.
[6] a) A. J. Toner, S. Gründemann, E. Clot, H. H. Limbach, B.
Donnadieu, S. Sabo-Etienne, B. Chaudret, J. Am. Chem. Soc.
2000, 122, 6777; b) A. M. Clark, C. E. F. Rickard, W. R. Roper,
L. J. Wright, Organometallics 1999, 18, 2813, and references
therein.
[7] a) P. Braunstein, M. D. Fryzuk, F. Naud, S. J. Rettig, J. Chem.
Soc. Dalton Trans. 1999, 589; b) H. Yang, M. Alvarez, N. Lugan,
R. Mathieu, J. Chem. Soc. Chem. Commun. 1995, 1721; c) H.
Yang, M. Alvarez-Gressier, N. Lugan, R. Mathieu, Organo-
metallics 1997, 16, 1401.
[13] H. Jacobsen, H. Berke in Recent Advances in Hydride Chemistry
(Eds.: M. Peruzzini, R. Poli), Elsevier, Amsterdam, 2001, p. 89.
[14] 2: 1H NMR (200.1MHz, C 6D6, 208C, TMS): d = 8.55–5.90 (m,
26H; ArH), 3.10–0.90 (m, 12H; CH2 and NH2), 2.30 (s, 3H;
CH3), À5.58 ppm (dd, J(H,P) = 89.1, 26.4 Hz, 1H; RuH);
13C{1H} NMR (50.3 MHz, C6D6, 458C, TMS): d = 189.1 (s;
CRu), 163.0 (s; NCC), 154.8 (s; NCCH2), 149.2–113.2 (m; Ar),
52.1(d, J(C,P) = 2.8 Hz; CH2N), 32.5 (d, J(C,P) = 13.8 Hz;
CH2P), 30.0 (d, J(C,P) = 21.3 Hz; CH2P), 27.0 (s; CH2), 22.8 (s;
CH2), 22.0 ppm (s, CH3); 31P{1H} NMR (81.0 MHz, C6D6, 208C,
H3PO4): d = 65.7 (d, J(P,P) = 17.2 Hz), 34.6 ppm (d, J(P,P) =
17.2 Hz); IR (Nujol): n˜ = 1743 cmÀ1 (br, RuH); elemental
analysis (%) calcd for C41H42N2P2Ru: C 67.85, H 5.83, N 3.86;
found: C 66.80, H 5.63, N 3.57.
[15] a) S. D. Drouin, D. Amoroso, G. P. A. Yap, D. E. Fogg, Organo-
metallics 2002, 21, 1042; b) C. Bianchini, P. Frediani, D. Masi, M.
Peruzzini, F. Zanobini, Organometallics 1994, 13, 4616; c) G. C.
Hsu, W. P. Kosar, W. D. Jones, Organometallics 1994, 13, 385.
[16] a) T. G. Appleton, H. C. Clark, L. E. Manzer, Coord. Chem. Rev.
1973, 10, 335; b) J. P. Collman, L. S. Hegedus, J. R. Norton, R. G.
Finke in Principles and Application of Organotransition Metal
Chemistry, University Science Books, Mill Valey, CA, 1987;
c) J. C. Toledo, B. S. Lima Neto, D. W. Franco, Coord. Chem.
Rev. 2005, 249, 419.
[17] 3: 1H NMR (200.1MHz, C 6D6, 208C, TMS): d = 8.40–5.80 (m,
35H; ArH), 5.58 (d, J(H,H) = 7.2 Hz, 1H; ArH), 5.35 (brs, 1H;
NH2), 4.86 (s, 1H; OCH), 3.20–2.60 (m, 5H), 2.25 (s, 3H; CH3),
2.10–0.9 ppm (m, 6H); 13C{1H} NMR (50.3 MHz, C6D6, 208C,
TMS): d = 187.6 (s; CRu), 163.8 (s; NCC), 157.4 (s; NCCH2),
155.7–112.4 (m; Ar), 80.1 (s, OCH), 52.0 (s; CH2N), 31.6 (d,
J(C,P) = 29.2 Hz; CH2P), 30.9 (d, J(C,P) = 26.7 Hz; CH2P), 27.0
(s; CH2), 22.6 (s; CH2), 22.1ppm (s, CH 3); 31P{1H} NMR
(81.0 MHz, C6D6, 208C, H3PO4): d = 57.0 (d, J(P,P) = 34.2 Hz),
37.3 ppm (d, J(P,P) = 34.2 Hz); elemental analysis (%) calcd for
C54H52N2OP2Ru: C 71.43, H 5.77, N 3.09; found: C 70.51, H 5.39,
N 2.81.
[18] a) M. S. Sanford, L. M. Henling, M. W. Day, R. H. Grubbs,
Angew. Chem. 2000, 112, 3593; Angew. Chem. Int. Ed. 2000, 39,
3451; b) F. Liang, H. W. Schmalle, T. Fox, H. Berke, Organo-
metallics 2003, 22, 3382; c) Z. Chen, H. W. Schmalle, T. Fox, H.
Berke, Dalton Trans. 2005, 580.
[19] a) J. R. Fulton, A. W. Holland, D. J. Fox, R. G. Bergman, Acc.
Chem. Res. 2002, 35, 44; b) H. E. Bryndza, W. Tam, Chem. Rev.
1988, 88, 1163; c) Y. J. Kim, K. Osakada, A. Takenaka, A.
Yamamoto, J. Am. Chem. Soc. 1990, 112, 1096; d) K. Osakada,
K. Ohshiro, A. Yamamoto, Organometallics 1991, 10, 404; e) S. E.
Kegley, C. J. Schaverien, J. H. Freudenberger, R. G. Bergman,
S. P. Nolan, C. D. Hoff, J. Am. Chem. Soc. 1987, 109, 6563.
[20] With acetic acid the formation of the corresponding ruthenium
acetate has been established and it will be described elsewhere.
[21] a) C. J. A. Daley, S. H. Bergens, J. Am. Chem. Soc. 2002, 124,
3680; b) Y. Hayashi, S. Komiya, T. Yamamoto, A. Yamamoto,
Chem. Lett. 1984, 1363.
[22] a) S. P. Nolan, T. R. Belderrain, R. H. Grubbs, Organometallics
1997, 16, 5569; b) M. A. Esteruelas, E. Sola, L. A. Oro, H.
Werner, U. Meyer, J. Mol. Catal. 1988, 45, 1; c) B. N. Chaudret,
D. J. Cole-Hamilton, R. S. Nohr, G. Wilkinson, J. Chem. Soc.
Dalton Trans. 1977, 1546.
[8] 1: 1H NMR (200.1MHz, CD 2Cl2, 208C, TMS): d = 8.10–6.57 (m,
24H; ArH), 6.00 (t, J(H,H) = 8.1Hz, 2H; m-Ph), 4.12 (dd,
J(H,H) = 15.5, 4.4 Hz, 1H; CH2N), 3.72 (td, J(H,H) = 15.5,
4.1Hz, 1H; CH 2N), 3.41(m, 1H; NH 2), 3.05 (m, 2H; CH2P),
2.46–0.90 (m, 7H; NH and CH2), 2.23 ppm (s, 3H; CH3); 13C{1H}
NMR (50.3 MHz, CD2Cl2, 208C, TMS): d = 181.8 (dd, J(C,P) =
16.3, 7.8 Hz; CRu), 163.2 (s; NCC), 155.9 (s; NCCH2), 149.2–
116.0 (m; Ar), 52.5 (d, J(C,P) = 2.7 Hz; CH2N), 33.4 (d, J(C,P) =
26.3 Hz; CH2P), 30.7 (d, J(C,P) = 31.6 Hz; CH2P), 26.8 (s; CH2),
22.1(s; CH 2), 21.8 ppm (s, CH3); 31P{1H} NMR (81.0 MHz,
CD2Cl2, 208C, H3PO4): d = 57.3 (d, J(P,P) = 38.3 Hz), 42.6 ppm
(d, J(P,P) = 38.3 Hz); elemental analysis (%) calcd for
C41H41N2ClP2Ru: C 64.77, H 5.44, N 3.68; found: C 64.36, H
5.52, N 3.70.
[9] T. Koizumi, T. Tomon, K. Tanaka, Organometallics 2003, 22, 970,
and references therein.
[10] Crystal structure analysis of 1·2C6H6, C53H53N2ClP2Ru, Mr =
¯
916.43, triclinic, space group P1, a = 11.547(3), b = 13.307(3),
c = 16.400(4) , a = 84.38(3), b = 74.29(3), g = 69.38(2)8, V=
2270.4(10) 3, Z = 2, 1calcd = 1.341 gcmÀ3, m = 4.285 mmÀ1, F-
(000) = 952, q = 3.55–64.828. Final R1 = 0.0487, wR2 = 0.1262,
S = 1.087 for 533 parameters and 6542 reflections (of which
6251with I > 2s(I)), max positive and negative peaks in DF map
0.547 and À0.689 eÀ3. Data were collected at 160(2) K on a
Nonius FR590 rotating anode (CuKa radiation, l = 1.54178 )
equipped with KappaCCD detector. CCDC-265691contains the
supplementary crystallographic data for this paper. These data
can be obtained free of charge from the Cambridge Crystallo-
[11] D. Song, R. H. Morris, Organometallics 2004, 23, 4406.
[12] For example, 1.97 g of the pharmaceutical intermediate 4-
chlorobenzhydrol (90% yield) was obtained from 4-chloroben-
zophenone in 2-propanol (NaOH 2 mol%) after 2 h at reflux
[23] a) D. M. Hoffman, D. Lappas, D. A. Wierda, J. Am. Chem. Soc.
1993, 115, 10538; b) M. A. Esteruelas, C. Valero, L. A. Oro, U.
Meyer, H. Werner, Inorg. Chem. 1991, 30, 1159.
[24] T. Koike, T. Ikariya, Adv. Synth. Catal. 2004, 346, 37.
[25] a) K. Abdur-Rashid, S. E. Clapham, A. Hadzovic, J. N. Harvey,
A. J. Lough, R. H. Morris, J. Am. Chem. Soc. 2002, 124, 15104;
b) T. Koike, T. Ikariya, Organometallics 2005, 24, 724.
6218
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 6214 –6219