RSC Advances
Page 6 of 6
DOI: 10.1039/C5RA09688J
h, Jsc increases, Voc and FF decreases with time due to the aging
effect, resulting an increase in PCE with time up to 200 h. After
device aging for 200 h, the device performance becomes steady;
all parameters remain almost constant with time. These data
indicates that the ssDSSC with DOII based solid electrolyte and
an organic dye is longꢀterm stable under oneꢀsun soaking.
Research Program (No. 2011CB933302) of China and STCSM
(12JC1401500).
Notes and references
Department
of
Chemistry,
iChEM
(Collaborative
Innovation Centre of Chemistry for Energy Materials), Lab of
Advanced Materials, Fudan University, 2205 Songhu Road,
Shanghai 200438, P. R. China
* Corresponding author. Eꢀmail: zs.wang@fudan.edu.cn
§ Electronic Supplementary Information (ESI) available: See
DOI: 10.1039/b000000x/
1. M. Grätzel, Nature 2001, 414, 338ꢀ334.
2. Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddin,
M. Grätzel, Nat. Mater. 2008, 7, 626ꢀ630.
3. H. N. Tian, X. A. Jiang, Z. Yu, L. Kloo, A. Hagfeldt, L. C. Sun, Angew.
Chem., Int. Ed. 2010, 49, 7328ꢀ7331.
4. A. Hagfeldt, G. Boschloo, L. C. Sun, L. Kloo, H. Pettersson, Chem.
Rev. 2010, 110, 6595ꢀ6663.
5. F. Gong, H. Wang, X. Xu, G. Zhou, Z. S. Wang, J. Am. Chem. Soc.
2012, 134, 10953ꢀ10958.
6. H. Wang, X. Zhang, F. Gong, G. Zhou, Z.ꢀS. Wang, Adv. Mater. 2011,
24, 121ꢀ124.
7. I. Chung, B. Lee, J. He, R. P. H. Chang, M. G. Kanatzidis, Nature,
2012, 485, 486ꢀ489.
8. J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin, T.
Sato, J. Am. Chem. Soc. 2008, 130, 11568ꢀ11569.
9. H. Wang, H. Li, B. Xue, Z. Wang, Q. Meng, L. Chen, J. Am. Chem.
Soc. 2005, 127, 6394ꢀ6401.
10. N. Yamanaka, R. Kawano, W. Kubo, T. Kitamura, Y. Wada, M.
Watanabe, S. Yanagida, Chem. Commun. 2005, 6, 740ꢀ742.
11. J. Le Bideau, L. Viau, A. Vioux, Chem. Soc. Rev. 2011, 40, 907ꢀ925.
12. F. Mazille, Z. Fei, D. Kuang, D. Zhao, S. M. Zakeeruddin, M. Grätzel,
P. J. Dyson, Inorg. Chem. 2006, 45, 1585ꢀ1590.
Figure 9. The longꢀterm stability of ssDSSC with DOII based solid
electrolyte
Conclusions
13. D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, M. Grätzel, J. Am.
Chem. Soc. 2006, 128, 7732ꢀ7733.
In summary, an etherꢀfunctionalized imidazolium iodide
conductor was designed and synthesized for use as a solidꢀstate
electrolyte in ssDSSCs. When one methane unit in the butyl
group of DBII was replaced with an oxygen atom, the packing
structure changes greatly due to the presence of H…O hydrogen
bonds, resulting in different ionic conductivity. Upon doping with
LiI, the ionic conductivity was improved more significantly for
DOII than for DBII, as the ether oxygen diminished the
interaction between Li+ and iodide, which raised the number of
charged species. Further doping with iodine, the increment of
conductivity was also more remarkable for DOII than for DBII
because of the formation of πꢀstacking in the former. The
presence of ether bond was found to shift the CB edge of TiO2
positively and to retard charge recombination. As compared to
DBII, the DOII produced higher Jsc, due to the higher ionic
conductivity and higher electron injection yield caused by the
lower CB edge, and comparable Voc, due to the opposite effects of
CB edge shift and charge recombination suppression. A power
conversion efficiency of 7.1% was obtained for an organic dye
based ssDSSC with DOII/I2/LiI as the solid electrolyte, which
was much higher than the efficiency of 5.3% for the DBII case at
the same conditions. In addition, a longꢀterm stability test
demonstrated that the ssDSSC device was stable under oneꢀsun
soaking.
14. E. I. Izgorodina, R. Maganti, V. Armel, P. M. Dean, J. M. Pringle, K.
R. Seddon, D. R. MacFarlane, J. Phys. Chem. B 2011, 115, 14688ꢀ14697.
15. J. Kutuniva, R. Oilunkaniemi, R. S. Laitinen, J. Asikkala, J.
Kärkkäinen, M. K. Z. Lajunen, Naturforsch. 2007, 62b, 868ꢀ870.
16. Y. Li, H. Wang, Q. Y. Feng, G. Zhou, Z.ꢀS. Wang, Energy Environ.
Sci. 2013, 6, 2156ꢀ2165.
17. Z.ꢀS. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coord. Chem.
Rev. 2004, 248, 1381ꢀ1389.
18. C. Janiak, J. Chem. Soc.-Dalton Trans. 2000, 21, 3885ꢀ3896.
19. A. Hanch, A. Georg, Electrochim. Acta 2001, 46, 3457ꢀ3466.
20. M. J. Monteiro, F. F. Camilo, M. C. C. Ribeiro, R. M. Torresi, J.
Phys. Chem. B 2010, 114, 12488ꢀ12494.
21. Z. Fei, W. H. Ang, D. Zhao, R. Scopelliti, E. E. Zvereva, S. A.
Katsyuba, P. J. Dyson, J. Phys. Chem. B. 2007, 111, 10095ꢀ10108.
22. F. C. Küpper, M. C. Feiters, B. Olofsson, T. Kaiho, S. Yanagida, M.
B. Zimmermann, L. J. Carpenter, G. W. Luther, Z. L. Lu, M. Jonsson, L.
Kloo, Angew. Chem., Int. Ed. 2011, 50, 11598ꢀ11620.
23. V. K. Thorsmølle, G. Rothenberger, D. Topgaard, J. C. Brauer, D. B.
Kuang, S. M. Zakeeruddin, B. Lindman, M. Grätzel, J. E. Moser,
ChemPhysChem 2011, 12, 145ꢀ149.
24. R. Kawano, M. Watanabe, Chem. Commun. 2003, 3, 330ꢀ331.
25. G. Schlichthörl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem.
B 1997, 101, 8141ꢀ8155.
26. N. Kopidakis, K. D. Benkstein, J. Lagemaat, A. J. Frank, J. Phys.
Chem. B 2003, 107, 11307ꢀ11315.
27. Z.ꢀS. Wang, G. Zhou, J. Phys. Chem. B 2009, 113, 15417ꢀ15421.
Acknowledgment
This work was financially supported by the National Basic
6
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]