ACS Medicinal Chemistry Letters
Page 4 of 6
3
4
Biel, M. A. Photodynamic therapy in head and neck cancer.
Curr. Oncol Rep. 2002, 4, 87-96.
Bonnett, R. Photosensitizers of the porphyrin and phthalocy-
Figure 6. Cell viability of SK-OV-3 cells in the presence of various
PS in liposomal formulations under light exposure
1
2
3
4
5
6
7
8
anine series for photodynamic therapy. Chem. Soc. Rev. 1995
24, 19-33.
,
100
80
5
6
7
Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey. R. K. The role of
porphyrin chemistry in tumor imaging and photodynamic
therapy. Chem. Soc. Rev. 2011, 40, 340-362.
Nyman, E. S.; Hynninen, P. H. Research advances in the use of
tetrapyrrolic photosensitizers for photodynamic therapy. J.
Photochem. Photobiol. B 2004, 73, 1-28.
Li, G.; Pandey, S. K.; Graham, A.; Dobhal, M. P.; Mehta, R.;
Chen, Y.; Gryshuk, A.; Olson, K. R.; Oseroff, A.; Pandey, R. K.
Functionalization of OEP-based benzochlorins to develop car-
bohydrate-conjugated photosensitizers. Attempt to target be-
ta-galactoside-recognized proteins. J. Org. Chem., 2004, 69,
158-172.
Derycke, A. S. L.; De Witte, P. A. M. Liposomes for photody-
namic therapy. Adv. Drug Del. Rev. 2004, 56, 17-30.
Chen, B.; Pogue, B. W.; Hoopes, P. J.; Hasan, T. Vascular and
cellular targeting for photodynamic therapy. Crit. Rev. Eukar-
yot Gene Expr. 2006, 16, 279-305.
60
NBDP-VER
PBDP-VER
NBDP-SAL
NBDP-NVER
40
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
20
0
0.1
1
PS, ꢁM
8
9
Figure 7. Cell viability of SK-OV-3 cells in the presence of various
PS in liposomal formulations and without light treatment.
In conclusion, we have developed a new series of Bodipy
based PS and evaluated their in vitro photodynamic activity
using liposomal encapsulation. PDT efficacy and photophysi-
cal characteristics of these compounds noticeably depend on
substituent present on them. Nitro group substitution on the
3,5 styryl moieties resulted in higher singlet oxygen and tri-
plet quantum yields. The photosensitizers reported herein
obtained competing IC50 values to those of classic PS, endors-
ing a scope to access advancements in Bodipy modification,
without the limitations of hydrophilicity as much as it was
focused earlier. This research paves the way for designing and
developing potent formulations of Bodipy sensitizers, circum-
venting the need to incorporate hydrophilic functional
groups.
10 Bai, D.; Xia, X.; Yow, C. M.; Chu, E. S.; Xu, C. Hypocrellin B-
encapsulated nanoparticle-mediated rev-caspase-3 gene
transfection and photodynamic therapy on tumor cells. Eur J
Pharmacol., 2011, 650, 496-500.
&cntry1=&state1=&recrs=ab1
12 Dragicevic-Curic, N.; Fahr, A. Liposomes in topical photody-
namic therapy. Expert Opin. Drug Deliv. 2012, 9, 1015-1032.
13 Choi, M. J.; Maibach, H. I. Liposomes and niosomes as topical
drug delivery systems. Skin Pharmacol Physiol. 2005, 18, 209-
219.
14 El Maghraby, G. M.; Williams, A. C. Vesicular systems for de-
livering conventional small organic molecules and larger mac-
romolecules to and through human skin. Expert Opin. Drug
Deliv., 2009, 6, 149-163.
15 Wainwright, M. Non-porphyrin photosensitizers in biomedi-
cine. Chem. Soc. Rev. 1996, 25, 351-359.
16 Awuah, S. G.; You. Y. Boron dipyrromethene (BODIPY)-based
ASSOCIATED CONTENT
photosensitizers for photodynamic therapy, RSC Adv., 2012
2, 11169-11183.
,
Supporting Information
17 Chen, Y.; Zhao, J.; Xie, L.; Guo, H.; Li, Q. Thienyl-substituted
BODIPYs with strong visible light-absorption and longlived tri-
plet excited states as organic triplet sensitizers for triplet–
triplet annihilation upconversion. RSC Adv. 2012, 2, 3942-
3953.
18 Ozlem, S.; Akkaya, E. U. Thinking outside the silicon box: mo-
lecular and logic as an additional layer of selectivity in singlet
oxygen generation for photodynamic therapy. J. Am. Chem.
Soc., 2008, 131, 48-49.
19 Lim, S. H.; Thivierge, C.; Sliwinska, P. N.; Han, J.; Bergh, H. V.
D.; Wagnieres, G.; Burgess, K.; Lee, H. B. In vitro and in vivo
photocytotoxicity of boron dipyrromethene derivatives for
photodynamic therapy. J. Med. Chem., 2010, 53, 2865-2874.
20 Wu, W.; Guo, H.; Wu, W.; Ji, S.; Zhao, J. Organic triplet sensi-
tizer library derived from a single chromophore (bodipy) with
long-lived triplet excited state for triplet–triplet annihilation
based upconversion. J. Org. Chem. 2011, 76, 7056-7064.
21 Umezawa, K.; Matsui, A.; Nakamura, Y.; Citterio, D.; Suzuki,
K. Bright, Color-tunable fluorescent dyes in the Vis/NIR re-
gion: Establishment of new "tailor-made" multicolor fluoro-
The Supporting Information is available free of charge on the ACS
Publications website.
Experimental procedures, characterization for the synthesis of com-
pounds mentioned in Figure 1, liposomal preparation, photobleach-
ing experiments, determination of triplet and singlet oxygen quan-
tum yields and Figures S1−S3 (PDF)
AUTHOR INFORMATION
Corresponding Authors
*
*
*
Tel: +91-40-27191384, E-mail: spsingh@iict.res.in
Tel: +91-40-27192504, E-mail: madhu@ccmb.res.in
Tel: 0471-2515476, E-mail: joshyja@gmail.com
Acknowledgment
TG and SM thank UGC and CSIR respectively for senior research
fellowship.
phores based on borondipyrromethene. Chem. Eur. J. 2009
15, 1096-1106.
,
References
22 Umezawa, K.; Nakamura, Y.; Makino, H.; Citterio, D.; Suzuki,
Bright, K. Color-tunable fluorescent dyes in the visible−near-
infrared region. J. Am. Chem. Soc. 2008, 130, 1550-1551.
23 Yang, Y.; Guo, Q.; Chen, H.; Zhou, Z.; Guo, Z.; Shen, Z.
Thienopyrrole-expanded BODIPY as a potential NIR photosen-
1
Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori,
G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynam-
ic therapy. J. Natl. Cancer Inst. 1998, 90, 889-905.
2
Hopper, C.; Photodynamic therapy: a clinical reality in the
treatment of cancer. The Lancet Oncol. 2000, 1, 212-219.
ACS Paragon Plus Environment