4
08
A. Zarei et al. / Tetrahedron Letters 53 (2012) 406–408
method for the preparation of aryldiazonium salts supported on
References and notes
1
6
the surface of silica sulfuric acid (aryldiazonium silica sulfates).
þꢀ
1. (a) Phakhodee, W.; Toyoda, M.; Chou, C. M.; Khunnawutmanotham, N.; Isobe,
We found that these new aryldiazonium salts, ArN2 OSO
3
—SiO
2
,
M. Tetrahedron 2011, 67, 1150; (b) Afonso, A.; Feliu, L.; Planas, M. Tetrahedron
could be stored at room temperature under anhydrous conditions.
These aryldiazonium salts are stable and can be used under differ-
2011, 67, 2238; (c) Yin, L.; Liebscher, J. Chem. Rev. 2007, 107, 133; (d)
Yokoyama, A.; Suzuki, H.; Kubota, Y.; Ohuchi, K.; Higashimura, H.; Yokozawa, T.
J. Am. Chem. Soc. 2007, 129, 7236; (e) Phan, N. T. S.; Van Der Sluys, M.; Jones, C.
W. Adv. Synth. Catal. 2006, 348, 609; (f) De Meijere, A.; Diederich, F. Metal-
Catalyzed Cross-Coupling Reactions; Wiley: Weinheim, 2004; (g) Hargreaves, S.
L.; Pilkington, B. L.; Russell, S. E.; Worthington, P. A. Tetrahedron Lett. 2000, 41,
1653; (h) Nicolaou, K. C.; Ramanjulu, J. M.; Natarajan, S.; Bräase, S.; Rübsam, F.
Chem. Commun. 1997, 1899.
1
6
ent reaction conditions. In the present work, various aryldiazo-
nium silica sulfates, as electrophiles, were employed in Suzuki–
Miyaura cross-coupling reactions using sodium tetraphenylborate
21
and Na
2
CO
3
under mild and heterogeneous conditions. These
at room temperature
reactions were catalyzed using Pd(OAc)
2
2
3
.
.
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
Molnar, A. Chem. Rev. 2011, 111, 2251.
without using additional ligands (Table 1). The corresponding phe-
nol derivatives were formed in trace amounts as by-products. We
also studied the effect of temperature on these reactions and found
that by increasing the reaction temperature, phenol formation in-
creased. Aryldiazonium silica sulfates with electron-withdrawing
groups or electron-donating groups also reacted effectively. The
steric effects of ortho substituents had relatively little influence
on the yields and reaction times. We also observed electronic ef-
fects due to functional groups on the aryl rings of the aryldiazo-
nium silica sulfates. In comparison with electron-withdrawing
groups, aryldiazonium silica sulfates with electron-donating
groups decreased the rates of the reactions at room temperature
4. Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
5.
6.
7.
Rossi, R.; Bellina, F.; Lessi, M. Tetrahedron 2011, 67, 6969.
Yang, J.; Li, P.; Wang, L. Synthesis 2011, 1295.
Zhou, W. J.; Wang, K. H.; Wang, J. X.; Gao, Z. R. Tetrahedron 2010, 66, 7633.
8. Chen, W.; Li, P.; Wang, L. Tetrahedron 2011, 67, 318.
Du, Z.; Zhou, W.; Wang, F.; Wang, J. X. Tetrahedron 2011, 67, 4914.
9.
10. Zhang, P. P.; Zhang, X. X.; Sun, H. X.; Liu, R. H.; Wang, B.; Lin, Y. H. Tetrahedron
Lett. 2009, 50, 4455.
11. Alonso, D. A.; Civicos, J. F.; Najera, C. Synlett 2009, 3011.
1
1
1
2. Fujihara, T.; Yoshida, S.; Ohta, H.; Tsuji, Y. Angew. Chem., Int. Ed. 2008, 47, 8310.
3. Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2008, 64, 3047.
4. Lu, G.; Franzen, R.; Zhang, Q.; Xu, Y. Tetrahedron Lett. 2005, 46, 4255.
15. (a) Taylor, R. H.; Felpin, F. X. Org. Lett. 2007, 9, 2911; (b) Qin, Y.; Wei, W.; Luo,
M. Synlett 2007, 2410; (c) Roglans, A.; Pla-Quintana, A.; Moreno-Manas, M.
Chem. Rev. 2006, 106, 4622; (d) Andrus, M. B.; Song, C. Org. Lett. 2001, 3,
(Table 1, entries 2–4). Thus, to accelerate the reaction rate, these
3761; (e) Sengupta, S.; Sadhukhan, S. K. Tetrahedron Lett. 1998, 39, 715; (f)
reactions were carried out under conventional heating and under
microwave irradiation at 60 °C. The corresponding products were
obtained in good yields (Table 1, entries 5–7). It was notable that
a halogen group (Br or Cl) on the aromatic ring of the aryldiazo-
nium silica sulfate remained intact during the course of the
reaction.
Sengupta, S.; Bhattacharyya, S. J. Org. Chem. 1997, 62, 3405.
16. (a) Zarei, A.; Hajipour, A. R.; Khazdooz, L.; Mirjalili, B. F.; Najafichermahini, A.
Dyes Pigments 2009, 81, 240; (b) Zarei, A.; Hajipour, A. R.; Khazdooz, L. Synthesis
2009, 941; (c) Zarei, A.; Hajipour, A. R.; Khazdooz, L.; Aghaei, H. Tetrahedron
Lett. 2009, 50, 4443; (d) Zarei, A.; Hajipour, A. R.; Khazdooz, L.; Aghaei, H.
Synlett 2010, 1201; (e) Zarei, A.; Khazdooz, L.; Hajipour, A. R.; Aghaei, H. Dyes
Pigments 2011, 91, 44; (f) Zarei, A.; Khazdooz, L.; Pirisedigh, A.; Hajipour, A. R.;
Seyedjamali, H.; Aghaei, H. Tetrahedron Lett. 2011, 52, 4554.
Traditionally, Suzuki–Miyaura coupling reactions have been
carried out using homogeneous palladium catalysts in the presence
of either a ligand or an additive to stabilize the Pd species during
1
7. (a) Zollinger, H. Diazo Chemistry I; VCH: Weinheim, 1994; (b) Zollinger, H. The
Chemistry of Amino, Nitroso; Nitro and Related Groups; John Wiley and Sons:
New York, 1996; (c) Olah, G. A.; Laali, K. K.; Wang, Q.; Prakash, G. K. S. Onium
Ions; Wiley: New York, 1998; (d) Tour, J. M. J. Org. Chem. 2007, 72, 7477; (e)
Barral, K.; Moorhouse, A. D.; Moses, J. E. Org. Lett. 2007, 9, 1809; (f) Hubbard, A.;
Okazaki, T.; Laali, K. K. J. Org. Chem. 2008, 73, 316; (g) Fabrizi, G.; Goggiamani,
A.; Sferrazza, A.; Cacchi, S. Angew. Chem., Int. Ed. 2010, 49, 4067; (h) Felpin, F.
X.; Nassar-Hardy, L.; Callonnec, F. L.; Fouquet, E. Tetrahedron 2011, 67, 2815.
8. Filimonov, V. D.; Trusova, M.; Postnikov, P.; Krasnokutskaya, E. A.; Lee, Y. M.;
Hwang, H. Y.; Kim, H.; Chi, K. W. Org. Lett. 2008, 10, 3961.
9. Taylor, J. G.; Moro, A. V.; Correia, C. R. D. Eur. J. Org. Chem. 2011, 1403.
0. (a) Barbero, M.; Degani, I.; Dughera, S.; Fochi, R. Synthesis 2004, 2386; (b)
Krasnokutskaya, E. A.; Semenischeva, N. I.; Filimonov, V. D.; Knochel, P.
Synthesis 2007, 81; (c) Gorlushko, D. A.; Filimonov, V. D.; Krasnokutskaya, E. A.;
Semenischeva, N. I.; Go, B. S.; Hwang, H. Y.; Cha, E. H.; Chi, K. W. Tetrahedron
Lett. 2008, 48, 1080; (d) Lee, Y. M.; Moon, M. U.; Vajpayee, V.; Filimonov, V. D.;
Chi, K. W. Tetrahedron 2010, 66, 7418.
0
the reaction, otherwise Pd tends to aggregate and precipitate be-
fore completion of the reaction. Furthermore, the cross-coupling
products are frequently contaminated by the remaining palladium
black and ligands, which can be difficult to separate from the final
products. Thus, using heterogeneous Pd catalysts could represent
an attractive method to overcome this problem because the heter-
ogeneous catalysts can be easily separated from the reaction mix-
1
1
2
6
,8
ture.
In the present procedure, by using aryldiazonium silica
sulfate as a heterogeneous system with high surface area, contam-
ination of the desired product with residual palladium decreased
due to reduction of the metal leaching from the surface.
2
1. General procedure for Suzuki–Miyaura cross-coupling of aryldiazonium silica
To summarize, we have reported an efficient, rapid, and exper-
imentally simple method for the Suzuki–Miyaura cross-coupling of
aryldiazonium silica sulfates with sodium tetraphenylborate to
form the corresponding biaryl derivatives in good yields.
sulfates NaBPh
4
: To a solution of Pd(OAc) (0.003 g, 1.5 mol %) and Na
2
2 3
CO
(
0.11 g, 1 mmol) in
H
2
O
(10 mL), NaBPh (0.11 g, 0.3 mmol) and freshly
4
16
prepared aryldiazonium silica sulfate (0.5 mmol) were added. The mixture
was stirred at room temperature for the time specified in Table 1. The reaction
progress was monitored by TLC (hexane/EtOAc, 75:25). After completion of the
reaction (absence of azo coupling with 2-naphthol), the mixture was diluted
with EtOAc (15 mL) and filtered after vigorous stirring. The residue was
extracted with EtOAc (2 ꢁ 10 mL) and the combined organic layer was washed
Acknowledgment
with H
2
O (2 ꢁ 10 mL) and dried over anhydrous Na
2 4
SO . The solvent was
evaporated under reduced pressure and the residue was purified by short
column chromatography.
We gratefully acknowledge the funding support received for
this Project from the Islamic Azad University, Fasa Branch.