Articles
Conclusion
We have developed a gamma/X-ray-mediated strategy for the activa-
tion of prodrugs based on the reduction of sulfonyl azide and phenyl
azide. The reactions are clearly mediated via free-radical chemis-
try and through the reductive loss of nitrogen , although the exact
reductive mechanism is unclear and will be the subject of future
studies. For the decaging of doxorubicin from the prodrug, decaging
was achieved through a two-step reaction: radical reduction of phe-
nyl azide and subsequent 1,6 self-immolation linker cleavage.
The findings here open the way to a whole new area of ‘ioniz-
ing irradiation’-mediated chemistry—not just for prodrug activa-
tion, but for switching on drug delivery from implanted devices to
the generation of a whole suite of tunable activation chemistries.
The local conversion of an inactive prodrug to an active drug via
NATurE CHEmIsTry
1
1
1
1
2
2
6. Takakusagi, Y. et al. Radiotherapy synergizes with the hypoxia-activated
prodrug evofosfamide: in vitro and in vivo studies. Antioxid. Redox Signal.
2
8, 131–140 (2018).
7. Nytko, K. J. et al. ꢁe hypoxia-activated prodrug evofosfamide in
combination with multiple regimens of radiotherapy. Oncotarget 8,
23702–23712 (2017).
8. Karzmark, C. J. Advances in linear accelerator design for radiotherapy,
advances in linear accelerator design for radiotherapy. Med. Phys. 11,
42
1
05–128 (1984).
9. Wroe, L. M. et al. Comparative analysis of radiotherapy linear accelerator
downtime and failure modes in the UK, Nigeria and Botswana. Clin. Oncol.
32, e111–e118 (2020).
0. Shtarkman, I. N., Gudkov, S. V., Chernikov, A. V. & Bruskov, V. I. X-ray- and
heat-induced generation of hydrogen peroxide and hydroxyl radicals in
aqueous solutions of ꢄ-amino acids. Biophysics 53, 1–7 (2008).
1. Riley, P. A. Free radicals in biology: oxidative stress and the eꢅects of ionizing
radiation. Int. J. Radiat. Biol. 65, 27–33 (2009).
concurrent radiotherapy will lead to much more tolerable treatment 22. Sutherland, B. M., Bennett, P. V., Sutherland, J. C. & Laval, J. Clustered
DNA damages induced by X-rays in human cells. Radiat. Res. 157,
regimes without the systemic toxicities observed in conventionally
delivered chemotherapies.
6
11–616 (2002).
2
3. Sutherland, B. M., Bennett, P. V., Sidorkina, O., Laval, J. & Clustered, D. N. A.
Damages induced in isolated DNA and in human cells by low doses of
ionizing radiation. Proc. Natl. Acad. Sci. USA 97, 103–108 (2000).
Online content
Any methods, additional references, Nature Research reporting sum- 24. Lomax, M. E., Folkes, L. K. & O’Neill, P. Biological consequences of
radiation-induced DNA damage: relevance to radiotherapy. Clin. Oncol. 25,
maries, source data, extended data, supplementary information,
5
78–585 (2013).
acknowledgements, peer review information; details of author contri-
2
5. Valerie, K. et al. Radiation-induced cell signaling: inside-out and outside-in.
Mol. Cancer Ter. 6, 789–801 (2007).
26. Sahin, E. et al. Telomere dysfunction induces metabolic and mitochondrial
compromise. Nature 470, 359–365 (2011).
2
2
2
7. O’Neill, P. & Wardman, P. Radiation chemistry comes before radiation
biology. Int. J. Radiat. Biol. 85, 9–25 (2009).
Received: 23 March 2020; Accepted: 22 April 2021;
Published online: 10 June 2021
8. Azzam, E. I., Jay-Gerin, J.-P. & Pain, D. Ionizing radiation-induced metabolic
oxidative stress and prolonged cell injury. Cancer Lett. 327, 48–60 (2012).
9. Nordsmark, M. et al. Prognostic value of tumor oxygenation in 397 head and
neck tumors aꢃer primary radiation therapy. An international multi-center
study. Radiother. Oncol. 77, 18–24 (2005).
References
1
.
Rautio, J. et al. Prodrugs: design and clinical applications. Nat. Rev. Drug
Discov. 7, 255–270 (2008).
2.
Miwa, M. et al. Design of a novel oral ꢀuoropyrimidine carbamate,
capecitabine, which generates 5-ꢀuorouracil selectively in tumours by
enzymes concentrated in human liver and cancer tissue. Eur. J. Cancer 34,
3
0. Kuzmin, G. N., Knatko, M. V. & Kurganov, S. V. Light and X-ray-induced
chemistry of methane on TiO . React. Kinet. Catal. Lett. 23, 313–317 (1983).
2
3
1. Barner-Kowollik, C., Vana, P., Quinn, J. F. & Davis, T. P. Long-lived
intermediates in reversible addition-fragmentation chain-transfer (RAFT)
polymerization generated by γ radiation. J. Polym. Sci. Pol. Chem. 40,
1274–1281 (1998).
3
.
.
Krasnovskaya, O. O. et al. ꢁiourea modiꢂed doxorubicin: a perspective
pH-sensitive prodrug. Bioconjug. Chem. 30, 741–750 (2019).
1
058–1063 (2002).
4
Ohwada, J. et al. Synthesis and biological activities of a pH-dependently
activated water-soluble prodrug of a novel hexacyclic camptothecin analog.
Bioorg. Med. Chem. Lett. 19, 2772–2776 (2009).
3
2. Yang, Y. et al. Photodecomposition of thienylsulfonyl azides: generation and
spectroscopic characterization of triplet thienylsulfonyl nitrenes and
3
-thienylnitrene. J. Phys. Chem. A 123, 9311–9320 (2019).
5
.
.
Swiꢃ, L. P., Cutts, S. M., Rephaeli, A., Nudelman, A. & Phillips, D. R.
Activation of adriamycin by the pH-dependent formaldehyde-releasing
prodrug hexamethylenetetramine. Mol. Cancer Ter. 2, 189–198 (2003).
Bentebibel, S.-E. et al. A ꢂrst-in-human study and biomarker analysis of
NKTR-214, a novel IL2Rβγ-biased cytokine, in patients with advanced or
metastatic solid tumors. Cancer Discov. 9, 711–721 (2019).
3
3
3
3
3. Reagan, M. T. & Nickon, A. ꢁe photolysis of sulfonyl azides in isopropyl
alcohol. J. Am. Chem. Soc. 90, 4096–4105 (1968).
4. Dermer, O. C. & Edmison, M. T. Orientation in aromatic substitution by the
benzenesulfonimido radical. J. Am. Chem. Soc. 77, 70–73 (1955).
5. Bukowski, R. M., Yasothan, U. & Kirkpatrick, P. Pazopanib. Nat. Rev. Drug
Discov. 9, 17–18 (2010).
6
7
.
.
Mustafa, A. A., Rajan, R., Suarez, J. D. & Alzghari, S. K. A review of the
opioid analgesic benzhydrocodone-acetaminophen. Cureus 10, e2844 (2018).
Charych, D. et al. Modeling the receptor pharmacology, pharmacokinetics
and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2
6. Sleijfer, S. et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients
with relapsed or refractory advanced soꢃ tissue sarcoma: a phase II study
from the European Organisation for Research and Treatment of Cancer–Soꢃ
Tissue and Bone Sarcoma Group (EORTC study 62043). J. Clin. Oncol. 27,
8
(
IL2) receptor agonist for cancer immunotherapy. PLoS ONE 12,
3
126–3132 (2009).
e0179431 (2017).
3
3
3
7. Stevens, M. Y., Sawant, R. T. & Odell, L. R. Synthesis of sulfonyl azides via
9
1
.
Norman, D. J. et al. Electrodrugs: an electrochemical prodrug activation
strategy. Chem. Commun. 54, 9242–9245 (2018).
15
diazotransfer using an imidazole-1-sulfonyl azide salt: scope and N NMR
labeling experiments. J. Org. Chem. 79, 4826–4831 (2014).
8. Zhu, X.-D. et al. Antiangiogenic eꢅects of pazopanib in xenograꢃ
hepatocellular carcinoma models: evaluation by quantitative
contrast-enhanced ultrasonography. BMC Cancer 11, 307 (2011).
9. Matikonda, S. S. et al. Mechanistic evaluation of bioorthogonal decaging with
trans-cyclooctene: the eꢅect of ꢀuorine substituents on aryl azide reactivity
and decaging from the 1,2,3-triazoline. Bioconj. Chem. 29, 324–334 (2018).
0. Doroshow, J. H. Eꢅect of anthracycline antibiotics on oxygen radical
formation in rat heart. Cancer Res. 43, 460–472 (1983).
0. Bezagu, M. et al. In situ targeted activation of an anticancer agent using
ultrasound-triggered release of composite droplets. Eur. J. Med. Chem. 142,
2–7 (2017).
1
1. Hossion, A. M. L., Bio, M., Nkepang, G., Awuah, S. G. & You, Y. Visible light
controlled release of anticancer drug through double activation of prodrug.
ACS Med. Chem. Lett. 4, 124–127 (2012).
1
1
2. Sauer, R. et al. Preoperative versus postoperative chemoradiotherapy for rectal
cancer. New Engl. J. Med. 351, 1731–1740 (2004).
4
4
4
3. Rosenzweig, K. E. & Gomez, J. E. Concurrent chemotherapy and radiation
therapy for inoperable locally advanced non-small-cell lung cancer. J. Clin.
Oncol. 35, 6–10 (2017).
1. Olson, R. D. & Mushlin, P. S. Doxorubicin cardiotoxicity: analysis of
prevailing hypotheses. FASEB J. 4, 3076–3086 (1990).
2. Benati, L. et al. Radical reduction of aromatic azides to amines with
triethylsilane. J. Org. Chem. 71, 5822–5825 (2006).
1
1
4. Alvarado-Miranda, A. et al. Concurrent chemo-radiotherapy following
neoadjuvant chemotherapy in locally advanced breast cancer. Radiat. Oncol.
4
, 24–28 (2009).
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
5. Mao, X. et al. An agent-based model for drug-radiation interactions in the
tumour microenvironment: hypoxia-activated prodrug SN30000 in
multicellular tumour spheroids. PLoS Comput. Biol. 14, e1006469 (2018).
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2021
8
10