trend para g meta . ortho chlorines. This is consistent with
results from previous studies. The dechlorination products
measured by West et al. (20) using 22′35′ and 0.25%-Pd 40-
mesh iron also suggest that ortho chlorines are more resistant
to removal than meta chlorines. Yak et al. (24), who
investigated PCB dechlorination by microscale ZVI in sub-
critical water at 250 °C, found ortho-substituted congeners
were less likely to undergo reductive dechlorination than
meta or para-substituted congeners. Furthermore, they found
meta chlorines more resistant to removal than para chlorines
(24). For example, they estimated the ratio of 33′4/ 344′ from
the dechlorination of 33′44′ to be 3/ 2. For nanoscale ZVI
under ambient temperatures in this study, this ratio is 7/ 2.
Thus abiotic, nanoscale ZVI-mediated PCB dechlorination
should result in byproducts that have lower fractions of para
and meta chlorines but a higher fraction of ortho chlorines.
This is favorable because ortho-substituted PCB congeners
are less toxic than non ortho-substituted, coplanar PCB
congeners.
Engineering Im plications. It is encouraging that reactivity
was noted with all the congeners studied and does offer some
promise that nanoscale ZVI could dechlorinate all 209
congeners. Coating microscale iron with palladium makes
microscale iron reactive, but the rate enhancement is short-
lived and does not justify using the expensive catalyst unless
the catalytic activity can be sustained or if the Pd/ Fe0 media
can be regenerated in situ. This will be difficult and cost
prohibitive in large-scale field applications. The slow rates
of dechlorination with nanoscale ZVI require it to be in
prolonged contact with the PCBs. Thus, ex situ treatment
reactors for PCB-contaminated waste streams (e.g., effluent
from soil/ sediment washing processes) requiring rapid
dechlorination rates are not likely to be practical. Dechlo-
rination of PCBs with nanoscale ZVI may, however, be
possible in situ (e.g., mixing nanoscale ZVI into PCB-
contaminated sediments stored in confined disposal facilities
(CDF) or in diffusion-dominated systems such as a reactive
barrier covering contaminated sediments left in place). PCBs
in natural media are predominantly sorbed to solids rather
than in solution, so the PCB dechlorination rates achievable
in in situ applications will ultimately be limited by the PCB
desorption rate and subsequent transport to a reactive
nanoiron particle. The presence of competing substrates,
dissolved solids, dissolved oxygen, etc. will also affect the
PCB dechlorination rate. The physical processes limiting the
availability of PCBs to iron will have to be considered in any
remedial design. Currently, the cost of producing nanoscale
ZVI by methods described here (∼ $200-300 per kg) is too
high for widespread application in sediments, but these costs
are expected to decrease as the market for nanoscale ZVI
increases and alternative synthesis processes become avail-
able. Methods to cost-effectively synthesize nanoscale ZVI
must become available, and the long-term reactivity of
nanoscale ZVI under natural reaction conditions must be
assessed, before this technology becomes a viable approach
for remediating PCBs in situ.
Literature Cited
(1) A Risk Management Strategy for PCB-Contaminated Sediments;
National Research Council, National Academy Press: Wash-
ington DC, 2001.
(2) Superfund Proposed Plan: Hudson River PCBs Superfund Site,
New York; U.S. EPA Region 2; Dec 2000, p 26.
(3) Rhee, G.-Y.; Sokol, R. C.; Bush, B.; Bethoney, C. M. Environ. Sci.
Technol. 1993, 27 (4), 714-719.
(4) Wiegel, J.; Wu, Q. FEMS Microbiol. Ecol. 2000, 32, 1-15.
(5) Zwiernik, M. J.; Quensen, J. F., III; Boyd, S. A. Environ. Sci.
Technol. 1998, 32 (21), 3360-3365.
(6) Cutter, L.; Watts, J.; Sowers, K.; May, H. D. Environ. Microbiol.
2001, 3 (11), 699-709.
(7) Wu, Q.; Watts, J.; Sowers, K.; May, H. D. Appl. Environ. Microbiol.
2002, 68 (2), 807-812.
(8) Fish, K. M.; Principe, J. M. Appl. Environ. Microbiol. 1994, 60
(12), 4289-4296.
(9) Abramowicz, D. A.; Brennan, M. J.; Van Dort, H. M.; Gallagher,
E. L. Environ. Sci. Technol. 1993, 27 (6), 1125-1131.
(10) Master, E. R.; Lai, V. W.; Kuipers, B.; Cullen, W. R.; Mohn, W.
M. Environ. Sci. Technol. 2002, 36 (1), 100-103.
(11) Dingyi, Y.; Quensen, J. F., III; Tiedje, J. M.; Boyd, S. A. Appl.
Environ. Microbiol. 1992, 58 (4), 1110-1114.
(12) Natarajan, M. R.; Nye, J.; Wu, W.-M.; Wang, H.; Jain, M. K. Biotech.
Bioeng. 1997, 55 (1), 182-190.
(13) Williams, W. A.; May, R., J. Environ. Sci. Technol. 1997, 31 (12),
3491-3496.
(14) Han, S.; Eltis, L. D.; Timmis, K. N.; Muchmore, S. W.; Bolin, J.
T. Science 1995, 270 (5238), 976-980.
(15) Matheson, L. J.; Tratnyek, P. G. Environ. Sci. Technol. 1994, 28
(12), 2045-2053.
(16) Vogan, J. L.; Focht, R. M.; Clark, D. K.; Graham, S. L. J. Hazard.
Mater. 1999, 68 (1), 97-108.
(17) Gillham, R. W.; O’Hannesin, S. F. Ground Water 1994, 32, 958-
967.
(18) Eykholt, G.; Davenport, D. Environ. Sci. Technol. 1998, 32 (10),
1482-1487.
(19) Powell, R. M.; Powell, P. D.; Puls, R. W. Economic Analysis of the
Implementation of Permeable Reactive Barriers for Remediation
of Contaminated Groundwater EPA/ 600/ R-02/ 034; Environ-
mental Protection Agency, U.S. Office or Research and Devel-
opment: Cincinnati, June 2002.
(20) West, O. R.; Liang, L.; Holden, W. L.; Korte, N. E.; Fernando, Q.;
Clausen, J. L. Degradation of Polychlorinated Biphenyls (PCBs)
Using Palladized Iron; ORNL/ TM-13217; Oak Ridge National
Laboratory: Oak Ridge, TN, 1996; 37831.
(21) Wang, C.; Zhang, W. Environ. Sci. Technol. 1997, 31 (7), 2154-
2156.
(22) Chuang, F.; Larson, R. A.; Wessman, M. S. Environ. Sci. Technol.
1995, 29 (9), 2460-2463.
(23) Yak, H. K.; Wenclawiak, B. W.; Cheng, I. F.; Doyle, J. G.; Wai, C.
M. Environ. Sci. Technol. 1999, 33 (8), 1307-1310.
(24) Yak, H. K.; Lang, Q.; Wai, C. M. Environ. Sci. Technol. 2000, 34
(13), 2792-2798.
(25) Grittini, C.; Malcomson, M.; Fernando, Q.; Korte, N. Environ.
Sci. Technol. 1995, 29 (11), 2898-2900.
(26) Schrick, B.; Blough, J. L.; Jones, D.; Mallouk, T. E. Chem. Mater.
2002, 14, 5140-5147.
(27) Zhang, W. X. J. Nanopart. Res. 2003, 5, 323-332.
(28) Ponder, S. M.; Darab, J. G.; Mallouk, T. E. Environ. Sci. Technol.
2000, 34 (12), 2564-2569.
(29) Safe, S. Crit. Rev. Toxicol. 1990, 21 (1), 51-88.
(30) Safe, S. Crit. Rev. Toxicol. 1994, 24 (2), 87-149.
(31) Frame, G. M.; Cochran, J. W.; Boewadt, S. S. J. High Resolut.
Chromatogr. 1996, 19, 657-668.
Acknowledgments
This research was supported in part by the Hazardous
Substance Research Center (HSRC) South and Southwest
through a research Grant to Dr. Lowry (R139634), the National
Science Foundation through a Graduate Student Fellowship
to K.M.J., and Alcoa, Inc. The authors also thank Dr.
Christopher S. Kim and the National Center for Electron
Microscopy (NCEM) for providing the ARM images and Dr.
Dorothy Farrell for the TEM and electron diffraction images.
(32) Alder, A. C.; Ha¨ggblom, M. M.; Oppenhelmer, S. R.; Young, L.
Y. Environ. Sci. Technol. 1993, 27 (3), 530-538.
(33) Morris, K. R.; Abramowitz, R.; Pinal, R.; Davis, P.; Yalkowsky, S.
H. Chemosphere 1988, 17 (2), 285-298.
(34) Shiu, W. Y.; Mackay, D. J. Phys. Chem. 1986, 15 (2), 911-929.
(35) Poerschmann, J.; Go´ recki, T.; Kopinke, F.-D. Environ. Sci.
Technol. 2000, 34 (17), 3824-3830.
(36) Johnson, T. L.; Scherer, M. M.; Tratnyek, P. G. Environ. Sci.
Technol. 1996, 30 (8), 2634-2640.
(37) Lowry, G. V.; Reinhard, M. Environ. Sci. Technol. 2000, 34 (15),
3217-3223.
(38) Mostafavi, M.; Marignier, J.; Amblard, J.; Belloni, J. Radiat. Phys.
Chem. 1989, 34 (4), 605-617.
Supporting Information Available
Detailed synthesis steps for the nanoscale iron used in this
study. This material is available free of charge via the Internet
at http:/ / pubs.acs.org.
(39) Jakusˇ, V.; Miertusˇ, S. Chem. Pap. 1990, 44 (5), 589-601.
9
VOL. 38, NO. 19, 2004 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 5 2 1 5