Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
DOI: 10.1039/C8CC01360H
Table 2 On-column modification of a 9-mer DNA strand by Suzuki cross-coupling with three modification sites. dUs represents the modified nucleotide
ON #
8(a)
8(b)
8(c)
8(d)
9
5’-GdUSG AdUSA dUSGC
Time (h)
4
Method
Yield (%)a
Dehal. (%)b
No rx (%)b
3 × Th
3 × Th
3 × Th
1
1
1
2
2
8
8
18
22
23
7
8
5
4
-
11
5
5
-
8
2 × 4
3 × 4
3 × 4
3 × Th
1 × Ph, 1 × MeTh, 1 × Th
-
aIsolated yield of triply modified ON. bIsolated yield for ONs with dehalogenation or no reaction in one position; Th = 2-thienyl, MeTh = 5-methyl-2-thienyl, Ph = phenyl.
7
8
K. Gutsmiedl, C. T. Wirges, V. Ehmke and T. Carell, Org. Lett.
2009, 11, 2405.
(a) S. S. van Berkel, M. B. van Eldijk and J. C. M. van Hest,
Angew. Chem. Int. Ed. 2011, 50, 8806; (b) C. I. Schilling, N.
Jung, M. Biskup, U. Schepers and S. Bräse, Chem. Soc. Rev.
2011, 40, 4840.
(a) H. Eberhard, F. Diezmann and O. Seitz, Angew. Chem. Int.
Ed. 2011, 123, 4232; (b) S. B. Rajur, C. M. Roth, J. R. Morgan
and M. L. Yarmush, Bioconjugate Chem. 1997, 8, 935.
with single and triple modifications of 2’-deoxy-5-iodouridine
introduced into 9-mers, either by reaction on the full-length
oligodeoxynucleotide or immediately after incorporation of
each 5IdU monomer. Complete conversion of a singly 2’-deoxy-
5-iodouridine modified 9-mer was observed for cross-couplings
with five different boronic acids, and with the highest yield
observed when cross-coupling reactions were carried out
immediately after incorporation of the 2’-deoxy-5-iodouridine
monomer. Cross-couplings with on the full-length triply 2’-
deoxy-5-iodouridine modified 9-mer were more challenging,
but successful cross-couplings were obtained by employing
double couplings and extended reaction times. Again, the
highest yields were observed for cross-couplings immediately
after incorporation of each 2’-deoxy-5-iodouridine monomer,
and this method was also used for sequential introduction of
different functionalities along the 9-mer oligodeoxynucleotide.
We expect that the new protocol for postsynthetic modification
of oligodeoxynucleotides described herein will find use during
design and synthesis of future oligonucleotides.
9
10 M. K. Schlegel, J. Hütter, M. Eriksson, B. Lepenies and P. H.
Seeberger, ChemBioChem 2011, 12, 2791.
11 L. A. Agrofoglio, I. Gillaizeau and Y. Saito, Chem. Rev. 2003,
103, 1875.
12 K. H. Shaughnessy, Molecules 2015, 20, 9419.
13 E. Defrancq and S. Messaoudi, ChemBioChem 2017, 18, 426.
14 S. I. Khan and M. W. Grinstaff, J. Am. Chem. Soc. 1999, 121
,
4704.
15 M. Rist, N. Amann and H.-A. Wagenknecht, Eur. J. Org. Chem.
2003, 13, 2498.
16 C. Grünewald, T. Kwon, N. Piton, U. Förster, J. Wachtveitl and
J. W. Engels, Bioorg. Med. Chem. 2008, 16, 19.
17 T. Strube, O. Schiemann, F. MacMillan, T. Prisner and J. W.
Engels, Nucleosides Nucleotides Nucleic Acids 2001, 20, 1271.
18 O. Schiemann, N. Piton, Y. G. Mu, G. Stock, J. W. Engels and
T. F. Prisner, J. Am. Chem. Soc. 2003, 126, 5722.
We thank the WILLUM Foundation for funding the
Biomolecular Nanoscale Engineering Center (BioNEC), grant
number VKR022710.
19 O. Schiemann, N. Piton, J. Plackmeyer, B. E. Bode, T. F.
Prisner and J. W. Engels, Nat. Protoc. 2007, 2, 904.
20 T. Kottysch, C. Ahlborn, F. Brotzel and C. Richert, Chem. Eur.
J. 2004, 10, 4017.
Conflicts of interest
There are no conflicts to declare.
21 O. Romainczyk, B. Endeward, T. F. Prisner and J. W. Engels,
Mol. Biosystems 2011, 7, 1050.
22 V. V. Filichev and E. B. Pedersen, J. Am. Chem. Soc. 2005,
127, 14849.
23 L. Wicke and J. W. Engels, Bioconjugate Chem. 2012, 23, 627.
24 A. Krause, A. Hertl, F. Muttach and A. Jäschke, Chem. Eur. J.
2014, 20, 16613.
Notes and references
1
Synthesis of modified oligonucleotides and conjugates,
Chapter 4 in Current protocols in nucleic acid chemistry. Eds.
S. L. Beaucage, D. E. Bergstrom, G. D. Glick and R. A. Jones,
John Wiley and Sons, Inc., 2011.
25 H. Cahová and A. Jäschke, Angew. Chem. Int. Ed. 2013, 52
,
3186.
26 L. Lercher, J. F. McGouran, B. M. Kessler, C. J. Schofield, and
B. G. Davis, Angew. Chem. Int. Ed. 2013, 52, 10553.
27 A. Omumi, D. G. Beach, M. Baker, W. Gabryelski, R. A.
Manderville, J. Am. Chem. Soc. 2011, 133, 42.
28 P. Wigerinck, C. Pannecouque, R. Snoeck, P. Claes, E. De
Clerq and P. Herdewijn, J. Med. Chem. 1991, 34, 2383.
29 N. J. Greco and Y. Tor, J. Am. Chem. Soc. 2005, 127, 10784.
30 M. S. Noé, R. W. Sinkeldam and Y. Tor, J. Org. Chem. 2013,
78, 8123.
2
(a) S. S. Jäger, G. Rasched, H. Kornreich-Leshem, M. Engeser,
O. Thum and M. Famulok, J. Am. Chem.Soc. 2005, 127
15071; (b) M. Hocek and M. Fojta, Org. Biomol. Chem. 2008,
,
6
, 2233 (c) V. Raindlová, R. Pohl, M. Sanda and M. Hocek,
Angew. Chem. Int. Ed. 2010, 49, 1064.
3
4
K. Burgess and D. Cook, Chem. Rev. 2000, 100, 2047.
A. H. Krotz, C. Rentel, D. Gorman, P. Olsen, H. J. Gaus, J. V.
McArdle and A. N. Scozzari, Nucleosides Nucleotides Nucleic
Acids 2004, 23, 767.
31 E. C. Western, J. R. Daft, E. M. Johnson, P. M. Gannett and K.
H. Shaughnessy, J. Org. Chem. 2003, 68, 6767.
32 S. Gallagher-Duval, G. Hervé, G. Sartori, G. Enderlin and C.
Len, New J. Chem. 2013, 37, 1989.
33 A. J. Gutierrez, T. J. Terhorst, M. D. Mateucci, and B. C.
Froehler, J. Am. Chem. Soc. 1994, 116, 5540.
5
6
S. H. Weisbrod and A. Marx, Chem. Commun., 2008, 5675.
(a) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B.
Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596; (b) C. W.
Tornøe, C. Christensen and M. Meldal, J. Org. Chem. 2002,
67, 3057; (c) H. C. Kolb, M. G. Finn and K. B. Sharpless,
Angew. Chem. Int. Ed. 2001, 40, 2004.
34 P. A. Hopkins, R. W. Sinkeldam and Y. Tor, Org. Lett. 2014,
16, 5290.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins