Paper
RSC Advances
Cl2(g) + 2eꢀ $ 2Clꢀ Eꢁ ¼ ꢀ1.358 V
Br2(aq) + 2eꢀ $ 2Brꢀ Eꢁ ¼ ꢀ1.087 V
I2 +2eꢀ $ 2Iꢀ Eꢁ ¼ ꢀ0.535 V
(4)
(5)
(6)
(7)
References
1 R. E. P. Winpenny, Chem. Soc. Rev., 1998, 27, 447–452.
2 M. Sakamoto, K. Manseki and H. Okawa, Coord. Chem. Rev.,
2001, 219–221, 379–414.
3 J.-P. Costes, A. Dupuis and J.-P. Laurent, Chem. –Eur. J., 1998,
4, 1616–1620.
ꢀ
NO2 + H2O + eꢀ $ NO+2OHꢀ Eꢁ ¼ ꢀ0.46 V
4 J.-P. Costes, F. Dahan, A. Dupuis and J.-P. Laurent, Inorg.
Chem., 1996, 35, 2400–2402.
5 J.-P. Costes, F. Dahan, A. Dupuis and J.-P. Laurent, Inorg.
Chem., 1997, 36, 3429–3443.
6 J. P. Costes, G. Novotchi, S. Shova, F. Dahan, B. Donnadieu
and J. P. Laurent, Inorg. Chem., 2004, 43, 7792.
7 C. Novitchi, J. P. Costes and B. Donnadieu, Eur. J. Inorg.
Chem., 2004, 1808.
8 J. P. Costes, F. Dahan, B. Donnadieu and J. P. Laurent, Eur. J.
Inorg. Chem., 2001, 363.
2NO3 + 2H2O + 2eꢀ $ N2O4 + 4OHꢀ Eꢁ ¼ ꢀ0.85 V (8)
ꢀ
2ꢀ
2ꢀ
2SO3 + 2H2O + 2eꢀ $ S2O4 + 4OHꢀ Eꢁ ¼ ꢀ1.12 V (9)
SO4 + H2O + 2eꢀ $ SO3 + 2OHꢀ Eꢁ ¼ ꢀ0.92 V (10)
2ꢀ
2ꢀ
2ꢀ
2ꢀ
S2O8 + 2eꢀ $ 2SO4 Eꢁ ¼ +2.01 V
(11)
(12)
2ꢀ
S2O3 + 6H+ + 2eꢀ $ 2S + 3H2O E0 ¼ 0.465 V
9 J. P. Costes, J. M. Clemente-Juan, F. Dumestre and
J. P. Tuchagues, Inorg. Chem., 2002, 41, 2886.
10 R. Koner, H. H. Lin, H.-H. Wei and S. Mohanta, Inorg. Chem.,
2005, 44, 3524–3526.
11 W.-K. Wong, K.-W. Cheah, H. Liang, W.-Y. Wong, Z. Cai and
K.-F. Li, New J. Chem., 2002, 26, 275–278.
12 S. Handa, V. Gnanadesikan, S. Matsunaga and M. Shibasaki,
J. Am. Chem. Soc., 2007, 129, 4900–4901.
13 T. Gao, P.-F. Yan, G.-M. Li, G.-F. Hou and J.-S. Gao, Inorg.
Chim. Acta, 2008, 361, 2051–2058.
14 R. Koner, G.-H. Lee, Y. Wang, H.-H. Wei and S. Mohanta,
Eur. J. Inorg. Chem., 2005, 1500–1505.
15 A. Jana, S. Majumder, L. Carrella, M. Nayak,
T. Weyhermueller, S. Dutta, D. Schollmeyer, E. Rentschler,
R. Koner and S. Mohanta, Inorg. Chem., 2010, 49, 9012 and
refs cited therein.
16 J.-P. Costes, J. M. C. Juan, F. Dahan, F. Dumestre and
J.-P. Tuchagues, Inorg. Chem., 2002, 41, 2886–2891.
17 D. Cremaschi, C. Porta, G. Meyer and C. Sironi, Eur. J.
Physiol., 2001, 442, 409–419.
2ꢀ
The above redox potentials indicate that only S2O82ꢀ/SO4
2ꢀ
and S2O3 /S38 systems have higher oxidation potentials
compared to the other redox systems. The complex containing
Nd as heteroatom was only found susceptible to such attack. It
is evident that the complex 2 containing Nd3+ suffers encoun-
ters observable spectral changes with S2O82ꢀand S2O32ꢀ species
which results in a subtle geometrical reorganization of the
molecule. Fluorescence activity reappears and the resulting
species have different emission life time than the parent
compounds. Everything happens only in presence of species
like S2O82ꢀand S2O3 having high redox potentials. All the
2ꢀ
results of absorbance, uorescence spectra and uorescence
life time measurements indicate that complex 2 containing Nd
heteroatom is more prospective towards speciation based anion
2ꢀ
sensing of sulphur containing anion species S2O82ꢀand S2O3
in particular.
Conclusion
18 Y. M. Takabayashi, M. Uemoto, K. Aoki, T. Odake and
T. Korenaga, Analyst, 2006, 131, 573–578.
19 N. Gayathri and N. Balasubramanian, Analyst, 1999, 27, 174–181.
20 D. Markovich, Physiol. Rev., 2001, 81, 1499–1533.
21 A. L. Lehninger, Lehninger principles of biochemistry, W.H
Freeman, New York, 4th edn, 2005.
22 Dictionary of Photography: A Reference Book for Amateur and
Professional Photographers, ed. A. L. M. Sowerby, Illife
Books Ltd, London, 19th edn, 1961.
23 M. Okubo and T. Mori, An isotachophoresis for the
microdetermination of potassium persulphate as initiator
in emulsion polymerization, Colloid Polym. Sci., 1988, 266,
333–336.
A new application of Schiff base 3d–4f heterometallic complex
has been explored. The synthesized Cu–Nd compound was
found to be effective in the speciation based anion sensing of
2ꢀ
2ꢀ
sulphur anions. As the S2O8 and S2O3 species have higher
redox potentials, they can modify the spectral features of the
Schiff-base complex containing Nd as the heteroatom. The
observations are in agreement with the single X-ray crystallo-
graphic features of the synthesized compound. The results
indicate the potentiality of this huge class of heterometallic
complexes towards development of analytical procedures in
anion sensing applications.
24 G. S. Waldo, R. M. K. Carison, J. M. Moldowan, K. E. Peters
and J. E. Pennerhahn, Geochim. Cosmochim. Acta, 1991, 55,
801–814.
25 M. Cuisinier, P. E. Cabelguen, S. Evers, G. He, M. Kolbeck,
A. Garsuch, T. Bolin, M. Balasubramanian and L. F. Nazar,
J. Phys. Chem. Lett., 2013, 4, 3227–3232.
Acknowledgements
S. S. thankfully acknowledges UGC and DST, New Delhi for
funding of the total work done in the Dept of Chemistry, A. P. C.
College. S. S. also acknowledges DST-FIST for funding of
Instruments. K. S. acknowledges UGC (Sanction no. 41-248/
2012 (SR)) for funding.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 40794–40802 | 40801