Angewandte Chemie International Edition
10.1002/anie.201708453
COMMUNICATION
sites and mutagenesis studies showed that alanine variants at
these positions were the most successful for improving activity
towards (±)-1c and (±)-1d. Therefore, this position is potentially
an important target for expanding the substrate scope of
IREDs/RedAms towards bulkier substrates.
award from BBSRC and Dr Reddy’s (Grant code BB/K013076/1).
N.J.T. acknowledges the ERC for the award of an Advanced
Grant. Thanks also go to Oliver J. Dunks for assistance with
chemical synthesis and to Dr. Nicholas J. Weise for insightful
discussions.
The preparation of chiral imine (S)-1c in single enantiomer form
was achieved with the aid of TA biocatalysts ATA-113 and Pc-
Experimental Section
See supporting information.
[
40]
SpuC from P. chlororaphis subsp. aureofaciens
for the
synthesis of the intermediate (S)-7 from ketone 6 in high yield
and enantioselectivity (Scheme 2). Imine (S)-1c is a versatile
intermediate for the synthesis of various dibenz[c,e]azepine
Keywords: dibenz[c,e]azepines
retrosynthesis • imine reductase • transaminase
• biocatalysis • biocatalytic
[
41]
frameworks such as 8 via nucleophilic attack onto the imine.
This route could also provide access to compound 2d which was
not possible in high conversion with IRED catalysis. (S)-1c was
References
[1]
M. De Lera Ruiz, M. Y. Berlin, J. Zheng, R. G. Aslanian, K.
D. McCormick, Q. Zeng, Tricyclic Heterocycle Derivatives
as Histamine H3 Antagonists, WO2010011653 A1, 2010,
CAN152:192180.
also reduced chemically with NaBH
4
to afford enantiopure
(
S,aR)-2a (major conformer), providing an alternative to the
IRED biocatalytic route to this compound (Scheme 2).
[
[
2]
3]
I. H. Hall, A. R. K. Murthy, S. D. Wyrick, J. Pharm. Sci.
1986, 75, 622–626.
P. C. B. Page, C. J. Bartlett, Y. Chan, D. Day, P. Parker, B.
R. Buckley, G. A. Rassias, A. M. Z. Slawin, S. M. Allin, J.
Lacour, et al., J. Org. Chem. 2012, 77, 6128–6138.
T. Kano, H. Sugimoto, K. Maruoka, J. Am. Chem. Soc.
[
[
[
[
[
4]
5]
6]
7]
8]
2
011, 133, 18130–18133.
L. A. Saudan, G. Bernardinelli, E. P. Kundig, Synlett 2000,
, 483–486.
S. L. Pira, T. W. Wallace, J. P. Graham, Org. Lett. 2009, 11,
663–1666.
4
1
C. A. Cheetham, R. S. Massey, S. L. Pira, R. G. Pritchard,
T. W. Wallace, Org. Biomol. Chem. 2011, 9, 1831–1838.
S. Postikova, M. Sabbah, D. Wightman, N. Ich Tuan, M.
Sanselme, T. Besson, J.-F. Briere, S. Oudeyer, V.
Levacher, J. Org. Chem. 2013, 78, 8191–8197.
[
[
9]
P. C. B. Page, C. A. Pearce, Y. Chan, P. Parker, B. R.
Buckley, G. A. Rassias, M. R. J. Elsegood, J. Org. Chem.
Scheme 2. Synthesis of (S)-1c employing transaminase biocatalysts ATA-113
2015, 80, 8036–8045.
and Pc-SpuC.
10]
V. Narbonne, P. Retailleau, G. Maestri, M. Malacria, Org.
Lett. 2014, 16, 628–631.
In summary, we have demonstrated the synthetic utility of IRED
and transaminase biocatalysts for the preparation of
enantiomerically pure dibenz[c,e]azepine frameworks. By
[
[
[
11]
12]
13]
N. J. Turner, E. O’Reilly, Nat. Chem. Biol. 2013, 9, 285–288.
A. P. Green, N. J. Turner, Perspect. Sci. 2016, 9, 42–48.
M. Hönig, P. Sondermann, N. J. Turner, E. M. Carreira,
Angew. Chem. Int. Ed. 2017, DOI: 10.1002/anie.201612462.
R. O. M. A. de Souza, L. S. M. Miranda, U. T. Bornscheuer,
Chem. - A Eur. J. 2017, 23, 12040–12063.
screening
a
range
of
IRED
biocatalysts,
several
enantiocomplementary enzymes were highlighted with
preparative-scale reactions successfully carried out in high yield
and enantiomeric excess. For the first time, a dibenz[c,e]azepine
imine has been crystallised in the active site of an IRED by
[14]
[15]
F. Guo, P. Berglund, Green Chem. 2017, 19, 333–360.
S. Mathew, H. Yun, ACS Catal. 2012, 2, 993–1001.
D. Koszelewski, K. Tauber, K. Faber, W. Kroutil, Trends
Biotechnol. 2010, 28, 324–332.
4
employing the redox inactive cofactor NADPH which informed
[
[
16]
17]
mutagenesis studies by rational design. Furthermore
transaminase biocatalysis has enabled the synthesis of
enantiopure precursors of 5,7-disubstituted dibenz[c,e]azepine
compounds.
[
[
18]
19]
R. C. Simon, N. Richter, E. Busto, W. Kroutil, ACS Catal.
2014, 4, 129–143.
J. Mangas-Sanchez, S. P. France, S. L. Montgomery, G. A.
Aleku, H. Man, M. Sharma, J. I. Ramsden, G. Grogan, N. J.
Turner, Curr. Opin. Chem. Biol. 2017, 37, 19–25.
Acknowledgements
S.P.F. acknowledges a CASE award from the UK Biotechnology
and Biological Sciences Research Council (BBSRC) and Pfizer.
M.S. and J.M.S were funded by grant BB/M006832/1 from the
BBSRC. R.W.A. acknowledges an EPSRC core capability grant
K039547/1 for NMR equipment. I.S. acknowledges a CASE
[
[
20]
21]
G. Grogan, N. J. Turner, Chem. Eur. J. 2016, 22, 1900–
1907.
J. H. Schrittwieser, S. Velikogne, W. Kroutil, Adv. Synth.
This article is protected by copyright. All rights reserved.