6
yields. In this method, we have achieved complete regioselctivity in both intramolecular and intermolecular cyclizations by using
CuI/Yb(OTf) catalyst system in CH CN solvent at reflux temperature. This method has the advantages of easy availability,
3 3
flexibility of starting materials, and it is one of the best examples for an atom-economy and one-pot multicomponent reaction. The
synthesized derivatives also exhibiting most significant biological activities and their related studies under progress, which will be
reported shortly.
Acknowledgments
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education (NRF- 2015R1D1A1A01058142), Korea Research Fellowship Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2016H1D3A1937140) and Medical
Research Center Program (2008-0062275).
References and notes
1
2
.
.
(a) Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1966, 88, 3888−3890.
(a) Emerson, D. L., Besterman, J. M., Brown, H. R., Evans, M. G., Leitner, P. P., Luzzio, M. J., Shaffer, J. E., Sternbach,D. D., Uehling, D.
Cancer Res. 1995, 55, 603–609. (b) Borgden, R. N., and Wiseman, L. R. Drugs 1998, 56, 709–723. (c) Choi, S. H., Tsuchida, Y., and Yang, H.
W. Cancer Lett. 1998, 124, 15–21. (d) Jew, S. S., Kim, H. J., Kim, M. G., Roh, E. Y., Cho, Y. S., Kim, J. K., Cha, K. H., Lee, K. K., Han, H. J.,
Choi, J. Y., Lee, H. Bioorg. Med. Chem. Lett. 1996, 6, 845–848. (e) Crul, M. CKD-602 (Chong Kun Dang). Curr. Opin. Invest. Drug 2003, 4,
1
455–1459. (f) Pommier, E. Nat. Rev. Cancer 2006, 6, 789–802.
3
.
(a) Sheng, C. Q.; Miao, Z. Y.; Zhang, W. N. Curr. Med. Chem. 2011, 18, 4389−4409. (b) Drwal, M. N.; Agama, K.; Wakelin, L. P. G.; Pommier,
Y.; Griffith, R. PLoS One 2011, 6, e25150. (c) Strumberg, D.; Pommier, Y.; Paull, K.; Jayaraman, M.; Nagafuji, P.; Cushman, M. J. Med. Chem.
1
999, 42, 446–457. (d) Cushman, M.; Jayaraman, M.; Vroman, J. A.; Fukunaga, A. K.; Fox, B. M.; Kohlhagen, G.; Strumberg, D.; Pommier, Y.
J. Med. Chem. 2000, 43, 3688–3698. (e) Pommier, Y.; Cushman, M. Mol. Cancer Ther. 2009, 8, 1008–1014. (f) Morrell, A.; Placzek, M.;
Parmley, S.; Grella, B.; Antony, S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2007, 50, 4388–4404. (g) Morrell, A.; Placzek, M.; Parmley, S.;
Antony, S.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2007, 50, 4419–4430.
4
5
.
.
(a) Kiselev, E.; Dexheimer, T. S.; Pommier, Y.; Cushman, M. J. Med. Chem. 2010, 53, 8716–8726. (b) Kiselev, E.; Empey, N.; Agama, K.;
Pommier, Y.; Cushman, M. J. Org. Chem. 2012, 77, 5167–5172.
(a) Chan, L.; Jin, H.; Stefanac, T.; Lavallée, J. F.; Falardeau, G.; Wang, W.; Bédard, J.; May, S.; Yuen, L., 1. Chan, L.; Jin, H.; Stefanac, T.;
Lavallée, J. F.; Falardeau, G.; Wang, W.; Bédard, J.; May, S.; Yuen, L. J. Med. Chem. 1999, 42, 3023–3025. (b) Melamed, J. Y.; Egbertson, M.
S.; Varga, S.; Vacca, J. P.; Moyer, G.; Gabryelski, L.; Felock, P. J.; Stillmock, K. A.; Witmer, M. V.; Schleif, W.; Hazuda, D. J.; Leonard, Y.;
Jin, L.; Ellis, J. D.; Young, S. D. Bioorg. Med. Chem. Lett. 2008, 18, 5307–5310. (c) Deady, L. W.; Rodemann, T.; Zhuang, L.; Baguley, B. C.;
Denny, W. A. J. Med. Chem. 2003, 46, 1049–1054. (d) Fu, L.; Feng, X.; Wang, J. J.; Xun, Z.; Hu, J. D.; Zhang, J. J.; Zhao, Y. W.; Huang, Z. B.;
Shi, D. Q. ACS Comb. Sci. 2015, 17, 24–31. (e) Tian, C.; Jiao, X.; Liu, X.; Li, R.; Dong, L.; Liu, X.; Zhang, Z.; Xu, J.; Xu, M.; Xie, P.
Tetrahedron Letters 2012, 53, 4892–4895. (f) Litvinov, V. P.; Roman, S. V.; Dyachenko, V. D. Russian Chemical Reviews 2000, 69, 201–220.
(g) Litvinov, V. P. In Advances in the Chemistry of Naphthyridines, 2006; Vol. 91. pp 189. (h) Pierre, F.; Chua, P. C.; Obrien, S. E.; Siddiqui-
Jain, A.; Bourbon, P.; Haddach, M.; Michaux, J.; Nagasawa, J.; Schwaebe, M. K.; Stefan, E.; Vialettes, A.; Whitten, J. P.; Chen, T. K.; Darjania,
L.; Stansfield, R.; Anderes, K.; Bliesath, J.; Drygin, D.; Ho, C.; Omori, M.; Proffitt, C.; Streiner, N.; Trent, K.; Rice, W. G.; Ryckman, D. M. J.
Med. Chem. 2011, 54, 635–654. (i) Van Eis, M. J.; Evenou, J. P.; Floersheim, P.; Gaul, C.; Cowan-Jacob, S. W.; Monovich, L.; Rummel, G.;
Schuler, W.; Stark, W.; Strauss, A.; Matt, A. V.; Vangrevelinghe, E.; Wagner, J.; Soldermann, N. Bioorg. Med. Chem. Lett. 2011, 21, 7367–7372.
(j) Strekowski, L.; Hojjat, M.; Wolinska, E.; Parker, A. N.; Paliakov, E.; Gorecki, T.; Tanious, F. A.; Wilson, W. D. Bioorg. Med. Chem. Lett.
2
005, 15, 1097–1100. (h) Hutton, S. M.; Mackay, S. P.; Meth-Cohn, O. Synthesis 2000, 1121–1124.
6
7
.
.
(a) Tian, W.; Yougnia, R.; Depauw, S.; Lansiaux, A.; David-Cordonnier, M. H.; Pfeiffer, B.; Kraus-Berthier, L.; Léonce, S.; Pierré, A.; Dufat, H.;
Michel, S. J. Med. Chem. 2014, 57, 10329–10342. (b) Chen, W. L.; Chen, C. Y.; Chen, Y. F.; Hsieh, J. C. Organic Letters 2015, 17, 161–163. (c)
Zhou, Y.; Beeler, A. B.; Cho, S.; Wang, Y.; Franzblau, S. G.; Snyder, J. K. J. Combi. Chem. 2008, 10, 534–540. (d) Khadka, D. B.; Cho, W. J.
Expert Opin. Ther. Pat. 2013, 23, 1033–1056.
(a) Jo, H.; Choi, M.; Kumar, A. S.; Jung, Y.; Kim, S.; Yun, J.; Kang, J. S.; Kim, Y.; Han, S. B.; Jung, J. K.; Cho, J.; Lee, K.; Kwak, J. H.; Lee, H.
ACS Med. Chem. Lett. 2016, 7, 385–390. (b) Arepalli, S. K.; Choi, M.; Jung, J. K.; Lee, H. Expert Opin. Ther. Pat. 2015, 25, 319–334. (c) Choi,
M.; Jo, H.; Park, H. J.; Sateesh Kumar, A.; Lee, J.; Yun, J.; Kim, Y.; Han, S. B.; Jung, J. K.; Cho, J.; Lee, K.; Kwak, J. H.; Lee, H. Bioorg. Med.
Chem. Lett. 2015, 25, 2545–2549. (d) Choi, M.; Hwang, Y. S.; Kumar, A. S.; Jo, H.; Jeong, Y.; Oh, Y.; Lee, J.; Yun, J.; Kim, Y.; Han, S. B.;
Jung, J. K.; Cho, J.; Lee, H. Bioorg. Med. Chem. Lett. 2014, 24, 2404–2407. (e) Kwak, J. H.; Won, S. W.; Kim, T. J.; Roh, E.; Kang, H. Y.; Lee,
H. W.; Jung, J. K.; Hwang, B. Y.; Kim, Y.; Cho, J.; Lee, H. Arch. Pharm. Res. 2008, 31, 133–141. (f) Kwak, J. H.; Kim, B. H.; Jung, J. K.; Kim,
Y.; Cho, J.; Lee, H. Arch. Pharm. Res. 2007, 30, 210–214. (g) Kwak, J. H.; Kim, Y.; Park, H.; Jang, J. Y.; Lee, K. K.; Yi, W.; Kwak, J. A.; Park,
S. G.; Kim, H.; Lee, K.; Kang, J. S.; Han, S. B.; Hwang, B. Y.; Hong, J. T.; Jung, J. K.; Kim, Y.; Cho, J.; Lee, H. Bioorg. Med. Chem. Lett. 2010,
2
0, 4620–4623.
8
.
.
(a) Boger, D.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis, Academic: San Diego, 1987; Chapter 2, 34-70; Chapter 9,
pp 239-299, and references therein. (b) Boger, D. L.; Patel, M. In Progress in Heterocyclic Chemistry, Suschitzky, H., Scriven, E. F. V., Eds.;
Pergamon: New York, 1989; pp 1–30. (c) Kametani, T.; Hibino, S. Adv. Heterocycl. Chem. 1987, 42, 246-333. (d) Tietze, L. -F.; Kettschau, G.
Topics Cur.Chem. 1997, 189, 1–120. (e) Kobayashi, S. Eur. J. Org. Chem. 1999, 15–27. (f) Panunzio, M.; Zarantonello, P. Org. Process Res.
Dev. 1988, 2, 49-59. (g) Enders, D.;Meyer, O. Liebigs Ann. 1996, 1023-1035. (h) Waldmann, H. Synthesis 1994, 535–551. (i) Waldmann, H.
Synlett 1995, 133–141.
(a) Povarov, L. S. Russ. Chem. Rev. 1967, 36, 656–670. (b) Boger, D. L. Tetrahedron 1983, 39, 2869–2939. (c) Vogt, P. F.; Miller, M. J.
Tetrahedron 1998, 54, 1317–48. (d) Gaddam, V.; Nagarajan, R. J. Org. Chem. 2007, 72, 3573–3576. (e) Desrat, S.; Van De Weghe, P. J. Org.
Chem 2009, 74, 6728–6734. (f) Nader, B.; Franck, R. W.; Weinreb, S. M. J. Am. Chem. Soc. 1980, 102, 1153–1155. (g) Weinreb, S. M. Acc.
Chem. Res. 1985, 18, 16–21.
9
1
0. (a) Kobayashi, S.; Komiyama, S.; Ishitani, H. Angew. Chem., Int. Ed. 1998, 37, 979–981; (b) Bromidge, S.; Wilson, P. C.; Whiting, H.
Tetrahedron Lett. 1998, 39, 8905–8908; (c) Jorgensen, K. A.; Hazell, R. G.; Johansen, M.; Yao, S. Angew. Chem., Int. Ed. 1998, 37, 3121–3124;
(d) Jorgensen, K. A.; Hazell, R. G.; Audrain, H.; Johansen, M.; Yao, S. J. Am. Chem. Soc. 1998, 120, 8599–8605; (e) Kobayashi, S.; Kusakabe,