K. C. Majumdar et al. / Tetrahedron Letters 51 (2010) 147–150
149
1
9. Majumdar, K. C.; Basu, P. K.; Mukhopadhyay, P. P.; Sarkar, S.; Ghosh, S. K.;
O
R1
Biswas, P. Tetrahedron 2003, 59, 2151–2157.
O
H O
2
20. Majumdar, K. C.; Mukhopadhyay, P. P. Synthesis 2003, 97–100.
21. Ingal, A. H.. In Comprehensive Heterocyclic Chemistry; Boulton, A. S., McKillop, A.,
Eds.; Pergamon Press: Oxford, 1984; Vol. 3, p 773.
S
+R
R2
N
1
CHO
R2
S
2
2
2
2
2
2. Talley, J. J. J. Org. Chem. 1985, 50, 1695–1699.
3. Inamoto, N. Heteroat. Chem. 2001, 12, 183–194.
4. Majumdar, K. C.; Kundu, U. K.; Ghosh, S. K. Org. Lett. 2002, 4, 2629–2631.
5. Majumdar, K. C.; Muhuri, S. Synthesis 2006, 2725–2730.
6. Jayashankaran, J.; Manian, R. D. R. S.; Raghunathan, R. Tetrahedron Lett. 2006,
3
N
H
2
a-f
6
4
7, 2265–2270.
R1
O
O
27. Matiychuk, V. S.; Lesyk, R. B.; Obushak, M. D.; Gzella, A.; Atamanyuk, D. V.;
Ostapiuk, Y. V.; Kryshchyshyn, A. P. Tetrahedron Lett. 2008, 49, 4648–4651.
28. Majumdar, K. C.; Alam, S. J. Chem. Res. 2006, 281–285.
R1
R2
R2
1
,3-proton shift
2
3
3
9. Majumdar, K. C.; Alam, S. Org. Lett. 2006, 8, 4059–4062.
0. Majumdar, K. C.; Chattopadhyay, S. K. Can. J. Chem. 2006, 84, 469–475.
1. Majumdar, K. C.; Samanta, S. K. Synth. Commun. 2006, 36, 1299–1306.
S
S
N
N
4
a-f
32. Majumdar, K. C.; Bandopadhyay, A.; Biswas, A. Tetrahedron 2003, 59, 5289–
293.
3. Majumdar, K. C.; Kundu, U. K.; Ghosh, S. Perkin Trans.
140.
c-f (R2 = H)
5
5
3
3
1 2002, 2139–
Scheme 3. Probable mechanism of domino-Knoeveagel-hetero-Diels–Alder reaction.
2
4. For a detailed report on the toxicity of tin reagents, see: Occupational Exposure
to Organotin Compounds, US Department of Health, Education and Welfare:
Washington, November, 1976.
Diels–Alder reaction may produce the indole-annulated polyhet-
erocycles 4. However, we could isolate only products 4a and 4b
and no other corresponding products 4c–f were isolated. Instead
products 5c–f were obtained. The fact that substituents in ortho-
position of the aldehyde group led to unconjugated products
3
3
5. Boyer, I. J. Toxicology 1989, 55, 253–298.
6. Majumdar, K. C.; Taher, A.; Ray, K. Tetrahedron Lett. 2009, 50, 3889–3891.
37. Baudelle, R.; Melnyk, P.; Deprez, B.; Tartar, A. Tetrahedron 1998, 54, 4125–4140.
3
3
8. Yamanaka, M.; Nishida, A.; Nakagana, M. Org. Lett. 2000, 2, 159–161.
9. Deligny, M.; Carreaux, F.; Toupet, L.; Carboni, B. Adv. Synth. Catal. 2003, 345,
1215–1219.
(
4a,b) clearly indicates peri-hindrance, which is substantially
40. Yadav, J. S.; Reddy, B. V. S.; Sadashiv, K.; Padmavani, B. Adv. Synth. Catal. 2004,
346, 607–610.
3
diminished in case of an sp -hybridized angular carbon. Substrates
without a substituent in the ortho-position with respect to the
aldehyde group afforded conjugated products 5c–f involving a
4
4
1. Berkessel, A.; Erturk, E.; Laporte, C. Adv. Synth. Catal. 2006, 348, 223–228.
2. Tietze, L. F.; Ott, C.; Gerke, K.; Buback, M. Angew. Chem., Int. Ed. Engl. 1993, 32,
1485–1486.
4
4
4
3. Tietze, L. F. Chem. Rev. 1996, 96, 115–136.
1
,3-prototropic shift of the intermediates 4c–f.
In conclusion, we have demonstrated a simple and efficient
4. Tietze, L. F.; Rackelmann, N. Pure Appl. Chem. 2004, 76, 1967–1983.
5. Tietze, L. F.; Brasche, G.; Gericke, K. Domino Reactions in Organic Synthesis;
Wiley-VCH, 2006.
strategy for the synthesis of indole-annulated [6,6]-fused thiopyr-
anobenzopyrans in 72–80% yields by domino-Knoevenagel-hetero-
Diels–Alder reaction of unactivated terminal acetylene in the ab-
sence of any Lewis acid. The condition applied is mild, and water
is used as a reaction medium which is environment friendly. A
remarkable feature of this one-pot reaction is that C–C and C–S
bond formation occurs in the absence of any catalyst and base.
46. Manikandan, S.; Shanmugasundaram, M.; Raghunathan, R. Tetrahedron 2002,
8, 8957–8962.
5
47. Yadav, J. S.; Reddy, B. V. S.; Narsimhaswamy, D.; Lakshmi, P. N.; Narsimulu, K.;
Srinivasulu, G.; Kunwar, A. C. Tetrahedron Lett. 2004, 45, 3493–3497.
48. Jimenez-Alonso, S.; Estevez-Braun, A.; Ravelo, A. G.; Zarate, R.; Lopez, M.
Tetrahedron 2007, 63, 3066–3074.
4
5
5
9. Ramesh, E.; Raghunathan, R. Tetrahedron Lett. 2008, 49, 1812–1817.
0. Lee, Y. R.; Xia, L. Tetrahedron Lett. 2008, 49, 3283–3287.
1. Jimenez-Alonso, S.; Chavez, H.; Estevez-Braun, A.; Ravelo, A. G.; Feresin, G.;
Tapia, A. Tetrahedron 2008, 64, 8938–8942.
Acknowledgements
5
5
2. Lee, Y. R.; Kim, Y. M.; Kim, S. H. Tetrahedron 2009, 65, 101–108.
3. Desimoni, G.; Faita, G.; Righetti, P.; Tacconi, G. Tetrahedron 1996, 52, 12009–
1
2018.
4. Khoshkholgh, M. J.; Balalaie, S.; Bijanzadeh, H. R.; Gross, J. H. Synlett 2009, 55–
8.
55. Khoshkholgh, M. J.; Balalaie, S.; Bijanzadeh, H. R.; Gross, J. H. ARKIVOC 2009, ix,
14–121.
We thank CSIR (New Delhi) and DST (New Delhi) for financial
assistance. Two of us (A.T. and S.P.) are grateful to CSIR (New Delhi)
for a Senior and a Junior Research Fellowship.
5
5
1
56. Khoshkholgh, M. J.; Balalaie, S.; Bijanzadeh, H. R.; Rominger, F.; Gross, J. H.
Tetrahedron Lett. 2008, 49, 6965–6968.
References and notes
57. Khoshkholgh, M. J.; Balalaie, S.; Gleiter, R.; Rominger, F. Tetrahedron Lett. 2008,
49, 10924–10929.
1.
2.
3.
4.
5.
6.
Saxton, J. E. Indoles; Wiley-Interscience: New York, 1983.
Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York, 1970.
Carle, J. S.; Christophersen, C. J. Org. Chem. 1980, 45, 1586–1589.
Sakabe, N.; Sendo, Y.; Iijima, I.; Ban, Y. Tetrahedron Lett 1969, 30, 2527–2530.
Ohmoto, T.; Koike, K. Chem. Pharm. Bull. 1984, 32, 170–173.
Shimizu, M.; Ishikawa, M.; Komoda, Y.; Nkajima, T.; Yamaguchi, K.; Yoneda, N.
Chem. Pharm. Bull. 1984, 32, 463–474.
58. Khoshkholgh, M. J.; Lotfi, M.; Balalaie, S.; Rominger, F. Tetrahedron 2009, 65,
4228–4234.
59. Bashiardes, G.; Safir, I.; Barbot, F.; Laduranty, J. Tetrahedron Lett. 2004, 45,
1567–1570.
60. Grieco, P. A. Organic Synthesis in Water; Blacky Academic
Publishers: London, 1998.
& Professional
7
8
9
.
.
.
Yamanaka, E.; One, M.; Kasamatsu, S.; Aimi, N.; Sakai, S. Chem. Pharm. Bull.
61. Lindstrom, U. M. Chem. Rev. 2002, 102, 2751–2772.
62. Li, C.-J. Chem. Rev. 2005, 105, 3095–3165.
63. Li, C. J.; Chan, T. H. Comprehensive Organic Reactions in Aqueous Media; Wiley
and Sons: New York, 2007.
64. Dai, J.; Munakata, M.; Wu, L.-P.; Sowa, T. K.; Suenaga, Y. Inorg. Chim. Acta 1997,
258, 65–69.
1
984, 32, 818–821.
Taniguchi, M.; Anjiki, T.; Nakagawa, M.; Hino, T. Chem. Pharm. Bull. 1984, 32,
544–2554.
Hashimoto, Y.; Shudo, K.; Okamoto, T. Chem. Pharm. Bull. 1984, 32, 4300–4308.
2
1
0. Nakashima, Y.; Kawashima, Y.; Amanuma, F.; Sota, K.; Tanaka, A.; Kameyama,
T. Chem. Pharm. Bull. 1984, 32, 4271–4280.
65.
A
mixture of 1-methylindoline-2-thione (3) (1 equiv) and 2-
1
1
1. Kamijo, S.; Yamamoto, Y. J. Org. Chem. 2003, 68, 4764–4771.
2. Guillonneare, C.; Pierre, A.; Charton, Y.; Guilbaud, N.; Kraus-Berthier, I.; Leonce,
S.; Michel, A.; Bisagni, I.; Atassi, G. J. Med. Chem. 1999, 42, 2191–2203.
3. Haider, N.; Sotelo, E. Chem. Pharm. Bull. 2002, 50, 1479–1483.
4. Sakai, S.; Aimi, N.; Yamaguchi, K.; Hitotsuyonagi, Y.; Watanabe, C.; Yokose, K.;
Koyama, Y.; Shudo, K.; Itai, A. Chem. Pharm. Bull. 1984, 32, 354–357.
5. Endo, Y.; Shudo, K.; Faruhata, K.; Ogura, H.; Sakai, S.; Aimi, N.; Hitotsuyonagi,
Y.; Koyama, Y. Chem. Pharm. Bull. 1984, 32, 358–361.
6. Takada, S.; Makisumi, Y. Chem. Pharm. Bull. 1984, 32, 872–876.
7. Takada, S.; Ishizuka, N.; Sasatani, T.; Makisumi, Y.; Jyoyama, H.; Hatakeyama,
H.; Asanuma, F.; Hirose, K. Chem. Pharm. Bull. 1984, 32, 877–886.
8. Boger, D. L.; Weinreb, S. M. In Hetero Diels–Alder Methodology in Organic
Synthesis; Academic Press: New York, 1987; p 225.
propargyloxynaphthaldehyde (2a) (1 equiv) was refluxed in water for 5 h.
After completion of the reaction as monitored by TLC the reaction mixture was
cooled and diluted with water (50 mL). This was extracted with ethyl acetate
(3 Â 25 mL). The combined organic extract was washed with brine and dried
1
1
over anhydrous Na
2 4
SO . The solvent was distilled off. The crude product was
purified by column chromatography over silica gel (60–120 mesh) using
petroleum ether–ethyl acetate mixture (98:2) as eluent to give compound 4a.
1
Yield: 78%, colourless solid; mp 186–188 °C; IR(neat):
m
max = 749, 1456, 1613,
À1
1
1
1
2920 cm ; H NMR (CDCl , 300 MHz): d = 3.74 (s, 3H), 4.65 (d, J = 12.6 Hz,
3
H
1H), 4.85 (d, J = 12.9 Hz, 1H), 5.12 (s, 1H), 5.34 (d, J = 8.1 Hz, 1H), 6.36 (t,
J = 7.2 Hz, 1H), 6.64 (s, 1H), 6.87 (t, J = 7.5 Hz, 1H), 7.11 (d, J = 7.8 Hz, 1H), 7.25–
1
7.40 (m, 3H), 7.83 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 7.5 Hz, 1H) ppm. MS: m/z = 355
+
(M ). Anal. Calcd for C23
H
17NOS: C, 77.72; H, 4.82; N, 3.94. Found: C, 77.89; H,