Journal of the American Chemical Society
Page 10 of 11
1
2
3
4
5
6
7
8
(19) (a) Herder, M.; Lehn, J. M. The Photodynamic Covalent Bond:
Donors in Luminogenic Luciferins and Fluorescent Dyes. Org.
Sensitized Alkoxyamines as a Tool To Shift Reaction Networks
Out-of-Equilibrium Using Light Energy. J. Am. Chem. Soc. 2018,
140, 76471−7657. (b) Kathan, M.; Eisenreich, F.; Jurissek, C.;
Dallmann, A.; Gurke, J.; Hecht, S. Light-driven Molecular Trap
Enables Bidirectional Manipulation of Dynamic Covalent Systems.
Nat. Chem. 2018, 10, 1031−1036.
Lett. 2019, 21, 1641−1644. (b) Li, A. F.; Wang, J. H.; Wang, F.; Jiang,
Y. B., Anion Complexation and Sensing Using Modified Urea and
Thiourea-Based Receptors. Chem. Soc. Rev. 2010, 39, 3729−3745.
(27) El-Sedik, M.; Almonasy, N.; Nepras, M.; Bures, F.; Dvorak, M.;
Michl, M.; Cermak, J.; Hrdina, R. Synthesis, Absorption and
Fluorescence Properties of N-triazinyl Derivatives of 2-
Aminoanthracene. Dyes Pigm. 2012, 92, 1126−1131.
(28) Zhang, B. X.; Ge, C. P.; Yao, J.; Liu, Y. P.; Xie, H. C.; Fang, J. G.
Selective Selenol Fluorescent Probes: Design, Synthesis,
Structural Determinants, and Biological Applications. J. Am.
Chem. Soc. 2015, 137, 757−769.
(29) Henthorn, H. A.; Pluth, M. D. Mechanistic Insights into the
H2S-Mediated Reduction of Aryl Azides Commonly Used in H2S
Detection. J. Am. Chem. Soc. 2015, 137, 15330−15336.
(30) Duke, R. M.; Veale, E. B.; Pfeffer, F. M.; Kruger, P. E.;
Gunnlaugsson, T. Colorimetric and Fluorescent Anion Sensors: an
Overview of Recent Developments in the Use of 1,8-
Naphthalimide-Based Chemosensors. Chem. Soc. Rev. 2010, 39,
3936−3953.
(20) (a) Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. A
New Trend in Rhodamine-based Chemosensors: Application of
Spirolactam Ring-opening to Sensing Ions. Chem. Soc. Rev. 2008,
37, 1465−1472. (b) Beija, M.; Afonso, C. A. M.; Martinho, J. M. G.
Synthesis and Applications of Rhodamine Derivatives as
Fluorescent Probes. Chem. Soc. Rev. 2009, 38, 2410−2433. (c)
Chan, J.; Dodani, S. C.; Chang, C. J. Reaction-based Small-
Molecule Fluorescent Probes for Chemoselective Bioimaging.
Nat. Chem. 2012, 4, 973−984. (d) Chen, X. Q.; Pradhan, T.; Wang,
F.; Kim, J. S.; Yoon, J. Fluorescent Chemosensors Based on
Spiroring-Opening of Xanthenes and Related Derivatives. Chem.
Rev. 2012, 112, 1910−1956. (e) Han, J. Y.; Burgess, K. Fluorescent
Indicators for Intracellular pH. Chem. Rev. 2010, 110, 2709−2728.
(21) (a) Tian, H.; Yang, S. J. Recent Progresses on Diarylethene
Based Photochromic Switches. Chem. Soc. Rev. 2004, 33, 85−97. (b)
Irie, M.; Fulcaminato, T.; Matsuda, K.; Kobatake, S.
Photochromism of Diarylethene Molecules and Crystals:
Memories, Switches, and Actuators. Chem. Rev. 2014, 114,
12174−12277.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(31) Kim, M. K.; Kleckley, T. S.; Wiemer, A. J.; Holstein, S. A.; Hohl,
R. J.; Wiemer, D. F. Synthesis and Activity of Fluorescent
Isoprenoid Pyrophosphate Analogues. J. Org. Chem. 2004, 69,
8186−8193.
(32) Wu, X. M.; Sun, X. R.; Guo, Z. Q.; Tang, J. B.; Shen, Y. Q.;
James, T. D.; Tian, H.; Zhu, W. H. In Vivo and in Situ Tracking
Cancer Chemotherapy by Highly Photostable NIR Fluorescent
Theranostic Prodrug. J. Am. Chem. Soc. 2014, 136, 3579−3588.
(33) (a) Li, J.; Zhang, C. F.; Yang, S. H.; Yang, W. C.; Yang, G. F. A
Coumarin-Based Fluorescent Probe for Selective and Sensitive
Detection of Thiophenols and Its Application. Anal. Chem. 2014,
86, 3037−3042. (b) Jiang, W.; Fu, Q. Q.; Fan, H. Y.; Ho, J.; Wang,
W. A Highly Selective Fluorescent Probe for Thiophenols. Angew.
Chem., Int. Ed. 2007, 46, 8445−8448.
(34) Tang, Y. H.; Lee, D. Y.; Wang, J. L.; Li, G. H.; Yu, J. H.; Lin, W.
Y.; Yoon, J. Y. Development of Fluorescent Probes Based on
Protection-Deprotection of The Key Functional Groups for
Biological Imaging. Chem. Soc. Rev. 2015, 44, 5003−5015.
(35) (a) Zhou, X.; Lee, S.; Xu, Z. C.; Yoon, J. Recent Progress on the
Development of Chemosensors for Gases. Chem. Rev. 2015, 115,
7944−8000. (b) Li, Z.; Askim, J. R.; Suslick, K. S. The
Optoelectronic Nose: Colorimetric and Fluorometric Sensor
Arrays. Chem. Rev. 2019, 119, 231−292. (c) Sun, X. C.; Wang, Y.; Lei,
Y. Fluorescence based Explosive Detection: from Mechanisms to
Sensory Materials. Chem. Soc. Rev. 2015, 44, 8019−8061. (d) Iida,
H.; Iwahana, S.; Mizoguchi, T.; Yashima, E., Main-Chain Optically
Active Riboflavin Polymer for Asymmetric Catalysis and Its
Vapochromic Behavior. J. Am. Chem. Soc. 2012, 134, 15103−15113. (e)
Gao, M.; Li, S. W.; Lin, Y. H.; Geng, Y.; Ling, X.; Wang, L. C.; Qin,
A. J.; Tang, B. Fluorescent Light-Up Detection of Amine Vapors
Based on Aggregation-Induced Emission. ACS Sensors 2016, 1,
179−184. (f) Lin, H. W.; Jang, M.; Suslick, K. S., Preoxidation for
Colorimetric Sensor Array Detection of VOCs. J. Am. Chem. Soc.
2011, 133, 16786−16789. (g) Rochat, S.; Swager, T. M. Fluorescence
Sensing of Amine Vapors Using a Cationic Conjugated Polymer
Combined with Various Anions. Angew. Chem., Int. Ed. 2014, 53,
9792−9796.
(22) (a) Berkovic, G.; Krongauz, V.; Weiss, V. Spiropyrans and
Spirooxazines for Memories and Switches. Chem. Rev. 2000, 100,
1741−1754. (b) Klajn, R. Spiropyran-Based Dynamic Materials.
Chem. Soc. Rev. 2014, 43, 148−184.
(23) (a) Li, K.; Xiang, Y.; Wang, X. Y.; Li, J.; Hu, R. R.; Tong, A. J.;
Tang, B. Z. Reversible Photochromic System Based on Rhodamine
B Salicylaldehyde Hydrazone Metal Complex. J. Am. Chem. Soc.
2014, 136, 1643−1649. (b) Ye, Z. W.; Yu, H. B.; Yang, W.; Zheng, Y.;
Li, N.; Bian, H.; Wang, Z. C.; Liu, Q.; Song, Y. T.; Zhang, M. Y.;
Xiao, Y. Strategy to Lengthen the On-Time of Photochromic
Rhodamine Spirolactam for Super-resolution Photoactivated
Localization Microscopy. J. Am. Chem. Soc. 2019, 141, 6527−6536.
(c) Wu, C. Y.; Chen, H. Q.; Corrigan, N.; Jun, K.; Kan, X. N.; Li, Z.
B.; Liu, W. J.; Xu, J. T.; Boyer, C. Computer-Guided Discovery of a
pH-Responsive Organic Photocatalyst and Application for pH and
Light Dual-Gated Polymerization. J. Am. Chem. Soc. 2019, 141,
8207−8220. (d) Butkeyich, A. N.; Bossi, M. L.; Lukinavicius, G.;
Hell, S. W. Triarylmethane Fluorophores Resistant to Oxidative
Photobluing. J. Am. Chem. Soc. 2019, 141, 981−989. (e) Kawatani,
M. ; Yamamoto, K.; Yamada, D.; Kamiya, M.; Miyakawa, J.;
Miyama, Y.; Kojima, R.; Morikawa, T.; Kume, H.; Urano, Y.
Fluorescence Detection of Prostate Cancer by an Activatable
Fluorescence Probe for PSMA Carboxypeptidase Activity. J. Am.
Chem. Soc. 2019, 141, 10409−10416.
(24) (a) Ni, C. L.; Zha, D. J.; Ye, H. B.; Hai, Y.; Zhou, Y. T.; Anslyn,
E. V.; You, L. Dynamic Covalent Chemistry within Biphenyl
Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and
Chirality Sensing with a Single System. Angew. Chem., Int. Ed.
2018, 57, 1300−1305. (b) Hai, Y.; Zou, H. X.; Ye, H. B.; You, L. Three
Switchable Orthogonal Dynamic Covalent Reactions and
Complex Networks Based on the Control of Dual Reactivity. J.
Org. Chem. 2018, 83, 9858−9869.
(25) Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Structural
Changes Accompanying Intramolecular Electron Transfer: Focus
on Twisted Intramolecular Charge−Transfer States and
Structures. Chem. Rev. 2003, 103, 3899−4031.
(36) Pacquit, A.; Lau, K. T.; McLaughlin, H.; Frisby, J.; Quilty, B.;
Diamond, D., Development of A Volatile Amine Sensor for The
Monitoring of Fish Spoilage. Talanta 2006, 69, 515−520.
(37) Takeuchi, T.; Montenegro, J.; Hennig, A.; Matile, S., Pattern
Generation with Synthetic Sensing Systems in Lipid Bilayer
Membranes. Chem. Sci. 2011, 2, 303−307.
(26) (a) Sharma, D. K.; Adams, S. T.; Liebmann, K. L.; Choi, A.;
Miller, S. C. Sulfonamides Are an Overlooked Class of Electron
ACS Paragon Plus Environment