C O M M U N I C A T I O N S
appropriate substituent R1 on top of the bound metal center as shown
in the generic structure 27, such that the chiral binding pocket is
clearly defined. Work in this laboratory is ongoing to exploit these
structural features. Thereby, the basic nitrogen in, e.g., 14 or 15
provides opportunities for the separation of the enantiomers by
conventional means. Moreover, we were able to obtain the
imidazolium salt 16 in optically pure form by preparative HPLC.12,17
Chart 1. Tetramethoxycarbene-Rh Complex 19 and
Conformational Preference of the Related Cyclophane 2014
Chart 2. Fluorinated Planar Chiral Rh-Carbene Complexes and
Overlay of the Molecular Crystal Structure of the Fluorinated
Carbene Part of 21 (Yellow) and its Non-fluorinated Counterpart in
17 (Blue)12
Acknowledgment. Financial support by the DFG, the Fonds
der Chemischen Industrie, and the Spanish Ministerio de Educacio´n
y Ciencia (fellowship to M.A.) is gratefully acknowledged.
Supporting Information Available: Additional reference data,
Experimental Section, and copies of the NMR spectra. This material
References
(1) (a) Arduengo, A. J. Acc. Chem. Res. 1999, 32, 913. (b) Bourissou, D.;
Guerret, O.; Gabba¨ı, F. P.; Bertrand, G. Chem. ReV. 2000, 100, 39. (c)
Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290. (d) Carbene
Chemistry. From Fleeting Intermediates to Powerful Reagents; Bertrand,
G., Ed.; Dekker: New York, 2002. (e) Enders, D.; Balensiefer, T. Acc.
Chem. Res. 2004, 37, 534. (f) Peris, E.; Crabtree, R. H. Coord. Chem.
ReV. 2004, 248, 2239. (g) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem.
2005, 1815. (h) Hahn, F. E. Angew. Chem., Int. Ed. 2006, 45, 1348. (i)
N-Heterocyclic Carbenes in Synthesis; Nolan, S. P., Ed.; Wiley-VCH:
Weinheim, Germany, 2006. (j) N-Heterocyclic Carbenes in Transition
Metal Catalysis; Glorius, F., Ed.; Topics in Organometallic Chemistry,
Vol 21; Springer: Berlin, 2007.
Chart 3. Representative Examples of Known Planar Chiral NHC’s
(2) (a) Chianese, A. R.; Li, X.; Janzen, M. C.; Faller, J. W.; Crabtree, R. H.
Organometallics 2003, 22, 1663. (b) Herrmann, W. A.; Schu¨tz, J.; Frey,
G. D.; Herdtweck, E. Organometallics 2006, 25, 2437. (c) For additional
reference data and a pertinent discussion of donor abilities, see the
Supporting Information.
(3) Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem.
Soc. 2004, 126, 15195.
(4) (a) Alder, R. W.; Allen, P. R.; Murray, M.; Orpen, A. G. Angew. Chem.
Int. Ed. 1996, 35, 1121. (b) Kremzow, D.; Seidel, G.; Lehmann, C. W.;
Fu¨rstner, A. Chem. Eur. J. 2005, 11, 1833.
(5) (a) Alder, R. W.; Blake, M. E.; Bortolotti, C.; Bufali, S.; Butts, C. P.;
Linehan, E.; Oliva, J. M.; Orpen, A. G.; Quayle, M. J. Chem. Commun.
1999, 241-242. (b) Despagnet-Ayoub, E.; Grubbs, R. H. J. Am. Chem.
Soc. 2004, 126, 10198. (c) See also ref 4b and literature cited therein.
(6) (a) Igau, A.; Gru¨tzmacher, H.; Baceiredo, A.; Bertrand, G. J. Am. Chem.
Soc. 1988, 110, 6463. (b) Raubenheimer, H. G.; Stander, Y.; Marais, E.
K.; Thompson, C.; Kruger, G. J.; Cronje, S.; Deetlefs, M. J. Organomet.
Chem. 1999, 590, 158.
tetramethoxy-substituted carbene in complex 19 equals that of the
unsubstituted congener in 18. Four MeO groups on one ring of a
para-cyclophane are all mutually forced out of plane (e.g.,
compound 20, Chart 1),14 which entails that the -I and +M effects
of oxygen average out and hence render the methoxy substituents
electronically inconsequential.
(7) Lavallo, V.; Canac, Y.; DeHope, A.; Donnadieu, B.; Bertrand, G. Angew.
Chem., Int. Ed. 2005, 44, 7236.
In striking contrast, the trans-CO stretching frequency of complex
22 is very significantly shifted (ν˜ ) 2004 cm-1), thus revealing
the tremendous influence of the fluorinated lid on the donor capacity
of the carbene underneath. The remote fluorination overcompensates
the effects induced by ring annulation as well as cyclophane
formation, rendering the carbene unit in 22 even less electron-
donating than the parent compound 5. Since fluorine closely mimics
hydrogen in steric terms, the comparison of 18 and 22 exemplifies
an effective way to substantially alter the electronic characteristics
of a given NHC while maintaining its bulk and constitution virtually
unchanged. The overlay of the molecular crystal structures of 17
and 21 (Chart 2) supports this view, even though the carbene subunit
of 21 is slightly tilted away from the fluorinated rim, most likely
for stereoelectronic reasons.7
(8) Pra¨sang, C.; Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2005, 127,
10182.
(9) Vo¨gtle, F. Cyclophane Chemistry: Synthesis, Structures and Reactions;
Wiley: Chichester, England, 1993.
(10) Wo¨rsdo¨rfer, U.; Vo¨gtle, F.; Nieger, M.; Waletzke, M.; Grimme, S.; Glorius,
F.; Pfaltz, A. Synthesis 1999, 597.
(11) Fife, W. K. J. Org. Chem. 1983, 48, 1375.
(12) For further details, see the Supporting Information.
(13) (a) Alcarazo, M.; Roseblade, S. J.; Cowley, A. R.; Ferna´ndez, R.; Brown,
J. M.; Lassaletta, J. M. J. Am. Chem. Soc. 2005, 127, 3290. (b) Roseblade,
S. J.; Ros, A.; Monge, D.; Alcarazo, M.; AÄ lvarez, E.; Lassaletta, J. M.;
Ferna´ndez, R. Organometallics 2007, 26, 2570. (c) Burstein, C.; Lehmann,
C. W.; Glorius, F. Tetrahedron 2005, 61, 6207. (d) Nonnenmacher, M.;
Kunz, D.; Rominger, F.; Oeser, T. Chem. Commun. 2006, 1378. (e)
Miyashita, A.; Suzuki, Y.; Kobayashi, M.; Kuriyama, N.; Higashino, T.
Heterocycles 1996, 43, 509.
(14) Staab, H. A.; Krieger, C.; Wahl, P.; Kay, K.-Y. Chem. Ber. 1987, 120,
551.
(15) Review: Ce´sar, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. ReV.
2004, 33, 619.
In addition to the remote control over the donor abilities, the
planar chiral structure of the NHC ligands presented herein deserves
further comment. Although a host of chiral NHC’s has been
presented in the literature,1,15 planar chiral ones are scarce and
limited to cases such as 23-26 in which an NHC is merely attached
to a planar chiral entity (Chart 3).16 In contrast to such a tangling
arrangement, the NHC in 17-22 constitutes an integral part of the
stereogenic unit, which largely consists of π-bonds and is hence
distinctly more rigid and conformationally preorganized. Further-
more, the new ligand design allows one to precisely position an
(16) Leading references: (a) Bolm, C.; Kesselgruber, M.; Raabe, G. Organo-
metallics 2002, 21, 707. (b) Broggini, D.; Togni, A. HelV. Chim. Acta
2002, 85, 2518. (c) Seo, H.; Park, H.; Kim, B. Y.; Lee, J. H.; Son, S. U.;
Chung, Y. K. Organometallics 2003, 22, 618. (d) Gischig, S.; Togni, A.
Organometallics 2004, 23, 2479. (e) Ma, Y.; Song, C.; Ma, C.; Sun, Z.;
Chai, Q.; Andrus, M. B. Angew. Chem., Int. Ed. 2003, 42, 5871. (f)
Andrus, M. B.; Song, C.; Zhang, J. Org. Lett. 2002, 4, 2079. (g) Focken,
T.; Rudolph, J.; Bolm, C. Synthesis 2005, 429.
(17) For other contributions from this laboratory, see: (a) Fu¨rstner, A.;
Ackermann, L.; Gabor, B.; Goddard, R.; Lehmann, C. W.; Mynott, R.;
Stelzer, F.; Thiel, O. R. Chem. Eur. J. 2001, 7, 3236. (b) Fu¨rstner, A.;
Alcarazo, M.; Ce´sar, V.; Lehmann, C. W. Chem. Commun. 2006, 2176.
JA076028T
9
J. AM. CHEM. SOC. VOL. 129, NO. 42, 2007 12677