3296
S.-H. ZHAO ET AL.
T.; Sethi, A.; Welton, T.; Woolf, J. Diels–Alder reactions in room-temperature ionic
liquids. Tetrahedron Lett. 1999, 40, 793; (e) Le Boulaire, V.; Gree, R. Wittig reactions
´
in the ionic solvent [bmim][BF4]. Chem. Commun. 2000, 2195; (f) Mathews, C. J.; Smith,
P. J.; Welton, T. Palladium-catalysed Suzuki cross-coupling reactions in ambient tempera-
ture ionic liquids. Chem. Commun. 2000, 1249; (g) Xu, L.; Chen, W.; Xiao, J. J.
Palladium-catalyzed regioselective arylation of an electron-rich olefin by aryl halides in
ionic liquids. Org. Lett. 2001, 3, 295; (h) Deshmukh, R. R.; Rajagopal, R.; Srinivasan,
K. V. Ultrasound-promoted C–C bond formation: Heck reaction at ambient conditions
in room-temperature ionic liquids. Chem. Commun. 2001, 1544.
2. (a) Basavaiah, D.; Dharma Rao, P.; Suguna Hyma, R. The Baylis–Hillman reaction: A
novel carbon–carbon bond forming reaction. Tetrahedron 1996, 52, 8001; (b) Basaviah,
D.; Rao, A. J.; Satyanarayana, T. Recent advances in the Baylis–Hillman reaction and
applications. Chem. Rev. 2003, 103, 811.
3. (a) Baylis, A. B.; Hillman, M. E. D. German Patent 2,155,113, 1972; Chem. Abstr. 1972, 77,
34174q; (b) Drewes, S. E.; Roos, G. H. P. Synthetic potential of the tertiary-amine-
catalysed reaction of activated vinyl carbanions with aldehydes. Tetrahedron 1988, 44,
4653.
4. Rezgui, F.; El Gaied, M. M. DMAP-catalyzed hydroxymethylation of 2-cyclohexenones
in aqueous medium through Baylis–Hillman reaction. Tetrahedron Lett. 1998, 39, 5965.
5. Aggarwal, V. K.; Mereu, A. Superior amine catalysts for the Baylis–Hillman reaction: The
use of DBU and its implication. Chem. Commun. 1999, 2311.
6. Basavaiah, D.; Krishnamacharyulu, M.; Rao, A. J. The aqueous trimethylamine mediated
Baylis–Hillman reaction. Synth. Commun. 2000, 30, 2061.
7. Li, G.; Wei, H. X.; Gao, J. J.; Caputo, T. D. TiCl4-mediated Baylis–Hillman and aldol
reactions without the direct use of a Lewis base. Tetrahedron Lett. 2000, 41, 1.
8. Walsh, L. M.; Winn, C. L.; Goodman, J. M. Sulfide–BF3 ꢃ OEt2 mediated Baylis–Hillman
reactions. Tetrahedron Lett. 2002, 43, 219.
9. (a) Coelho, F.; Almeida, W. P.; Veronese, D.; Mateus, C. R.; Silva Lopes, E. C.; Rossi, R.
C.; Silveira, G. P. C.; Pavam, C. H. Ultrasound in Baylis–Hillman reactions with aliphatic
and aromatic aldehydes: Scope and limitations. Tetrahedron 2002, 58, 7437; (b) Nolte, R.
J.; Scheeren, H. W. Effect of branching in alkylgroups of tertiary amines on their perform-
ance as catalysts in the high-pressure-promoted Baylis–Hillman reaction. Tetrahedeon
1996, 52, 8307; (c) Hayashi, Y.; Okado, K.; Ashimine, I.; Shoji, M. The Baylis–Hillman
reaction under high pressure induced by water-freezing. Tetrahedron Lett. 2002, 43,
8683; (d) Rose, P. M.; Clifford, A. A.; Rayner, C. M. The Baylis–Hillman reaction in
supercritical carbon dioxide: Enhanced reaction rates, unprecedented ether formation,
and a novel phase-dependent 3-component coupling. Chem. Commun. 2002, 968; (e)
Sanzhong Luo, S.; Wang, P. G.; Cheng, J.-P. Remarkable rate acceleration of imidazole-
promoted Baylis-Hillman reaction involving cyclic enones in basic water solution. J. Org.
Chem. 2004, 69, 555; (f) Zhao, S.-H.; Chen, Z.-B. N-methyl piperidine—a useful base cata-
lyst in Morita-Baylis-Hillman reaction. Synth. Commun. 2005, 35, 3045.
10. Rosa, J. N.; Afonso, A. M.; Santos, A. G. Ionic liquids as a recyclable reaction medium
for the Baylis–Hillman reaction. Tetrahedron 2001, 57, 4189.
11. (a) Aggarwal, V. K.; Emme, I.; Mereu, A. Unexpected side reactions of imidazolium-
based ionic liquids in the base-catalysed Baylis–Hillman reaction. Chem. Commun.
2002, 1612; (b) Dupont, J.; Spencer, J. On the noninnocent nature of 1,3-dialkylimidazo-
lium ionic liquids. Angew. Chem. Int. Ed. Engl. 2004, 43, 5296.
12. Kabalka, G. W.; Varma, M.; Varma, R. S. Tosylation of alcohols. J. Org. Chem. 1986, 51, 2386.
13. (a) Zhao, S. H.; Zhang, H. R.; Feng, L. H.; Chen, Z.-B. Pyridinium ionic liquids-
accelerated amine-catalyzed Morita–Baylis–Hillman reaction. J. Mol. Catal. A: Chem.