Organic Process Research & Development
ARTICLE
concentrated in vacuo to afford the product as a low-melting solid,
which was subsequently recrystallised from hexane/EtOAc
(4:1 v/v) (2.70 g, 74%). H NMR (300 MHz, CDCl3): δ =
1.98À2.07 (2H, m), 2.37À2.42 (2H, m), 2.60 (2H, t, J = 6.7),
7.72 (1H, t, J = 4.4); 13C (100 MHz, CDCl3): δ = 23.3, 30.3, 37.7,
104.3, 159.9, 192.6, lit.17
(4) (a) Brown, G.; Mangan, D.; Miskelly, I.; Moody, T. S. Org. Process
Res. Dev. 2011, 5, 1036. (b) Matsuda, T.; Yamanaka, R; Nakamura, K.
Tetrahedron: Asymmetry 2009, 20, 513. (c) Borges, K. B.; de Souza
Borges, W.; Durꢀan-Patrꢀon, R.; Pupo, M. T.; Bonato, P. S.; Collado, I. G.
Tetrahedron: Asymmetry 2009, 20, 385. (d) Kaluzna, I. A.; Rozzell, J. D.;
Kambourakis, S. Tetrahedron: Asymmetry 2005, 16, 3682. (e) Nakamura,
K.; Yamanaka, R.; Matsuda, T.; Harada, T. Tetrahedron: Asymmetry 2003,
14, 2659.
(5) (a) Yang, Y.; Zhu, D.; Piegat, T. J.;Hua, L. Tetrahedron: Asymmetry
2007, 18, 1799. (b) Padha, S. K.; Kaluzna, I. A.; Buisson, D.; Azerad,
R.; Stewart, J. D. Tetrahedron: Asymmetry 2007, 18, 2133. (c) Panizza,
P.; Onetto, S.; Rodríguez, S. Biocatal. Biotransform. 2007, 25, 414.
(d) Weckbecker, A.; Hummel, W. Biocatal. Biotransform. 2006, 24, 380.
(e) Hanson, R. L.; Goldberg, S.; Goswami, A.; Tully, T. P.; Patel, R. N.
Adv. Synth. Catal. 2005, 347, 1073. (f) Engelking, H.; Pfaller, R.; Wich, G.;
Weuster-Botz, D. Tetrahedron: Asymmetry 2004, 15, 3591.
(6) (a) Kosjek, B.; Nti-Gyabaah, J.; Telari, K.; Dunne, L.; Moore,
J. C. Org. Process Res. Dev. 2008, 12, 584. (b) Zhu, D.; Yang, Y.; Hua, L.
J. Org. Chem. 2006, 71, 4202.
(7) (a) Lavandera, I.; H€oller, B.; Kern, A.; Ellmer, U.; Glieder, A.; de
Wildeman, S.; Kroutil, W. Tetrahedron: Asymmetry 2008, 19, 1954.
(b) Matsuda, T.; Yamagishi, Y.; Koguchi, S.; Iwai, N.; Kitazume, T.
Tetrahedron Lett. 2006, 47, 4619. (c) Amidjojo, M.; Weuster-Botz, D.
Tetrahedron: Asymmetry 2005, 16, 899.
(9) Stillger, T.; B€onits, M.; Filho, M. V.; Liese, A. Chem. Ing. Tech.
2002, 74, 1035.
1
Racemic 2-Iodo-2-cyclohexen-1-ol (4). 2-Iodo-2-cyclohex-
en-1-one (2) was reduced as for 3 to yield the title compound as a
1
colourless crystalline solid (1 g, 90%). H NMR (300 MHz,
CDCl3): δ = 1.59À2.15 (6H, m), 2.28 (1H, s), 4.20 (1H, s), 7.72
(1H, t, J = 4.4); 13C (100 MHz, CDCl3): δ = 17.7, 29.4, 32.0,
72.1, 103.6, 141.0, lit.18
Screening Conditions for the Enzymatic Reduction of
2-Bromocyclohex-2-enone (1). A solution of 2-bromocyclohex-
2-enone (1) (20 mg) in DMSO (50 μL) was added to a solution of
NADP+ or NAD+ (2 mg), depending on cofactor preference, in
pH 7 KH2PO4 buffer (0.1 M, 1.5 mL). Lyophilized CRED
biocatalyst (2 mg), glucose (50 mg), and GDH (3 mg) were added.
The vial was sealed and shaken overnight at 30 °C. MtBE (1.5 mL)
was added to the vial, and the organic layer was separated, filtered
through a cotton wool plug containing anhydrous MgSO4, and
analysed by GC.
(S)-2-Bromo-2-cyclohexen-1-ol ((S)-3). CRED A601 cell
paste (20 g) was resuspended in a solution of pH 7 KH2PO4
buffer (3.9 L, 0.1 M) containing NADP+ (1.0 g, 1.3 mmol) and
shaken at 20 °C for 30 min. The suspension was transferred to a
5-L reactor to which was added a solution of 2-bromocyclohex-2-
enone (1) (100 g, 0.57 mol) dissolved in IPA (800 mL) and
DMSO (200 mL). In addition, polypropylene glycol (1.5 mL) was
added to prevent excessive foaming. The reaction mixture was
stirred mechanically using an overhead stirrer and incubated at
35 °C for 24 h. The depletion of IPA and water was counter-
balanced by bubbling a pressurised airflow saturated with 2-
propanol and water (1:4 v/v) through the reaction mixture. Upon
completion, the resulting mixture was extracted with MtBE (3 Â 5L)
and washed with water (2 Â 2.5 L) and brine (2 Â 2.5 L) and dried
over MgSO4. Solvent was removed under reduced pressure to afford
the title compound as a colourless oil (89 g, 88%) with an
(10) Goldberg, K.; Edegger, K.; Kroutil, W.; Liese, A. Biotechnol.
Bioeng. 2006, 95, 192.
(11) Daussmann, T.; Rosen, T. C.; D€unkelmann, P. Eng. Life Sci.
2006, 6, 125.
(12) Stark, D.; von Stockar, U. Process Integration in Biochemical
Engineering; Springer-Verlag: Berlin, 2003.
(13) Andrade, L. H.; Piovan, L.; Pasquini, M. D. Tetrahedron:
Asymmetry 2009, 20, 1521.
(14) Kim, J.; Bruning, J.; Park, K. E.; Lee, D. J.; Singaram, B. Org. Lett.
2009, 11, 4358.
(15) Sonnerberg, J. J. Org. Chem. 1962, 27, 748.
(16) Kangying, L.; Alexendre, A. Angew. Chem., Int. Ed. 2006,
45, 7600.
(17) Krafft, M. E.; Cran, J. W. Synlett 2005, 8, 1263.
(18) Sha, C.-K.; Huang, S.-J.; Zhan, Z.-P. J. Org. Chem. 2002, 67, 831.
1
enantiomeric excess of 99.8% as determined by GC analysis. H
NMR (300 MHz, CDCl3):δ=1.62À1.77(2H, m), 1.83À1.98 (2H,
m), 2.03À2.13 (2H, m), 2.40 (1H, d, J = 4.2), 4.22 (1H, t, J = 4.3),
6.21 (1H, t, J = 4.2). 13C NMR (100 MHz, CDCl3): δ = 17.6, 27.8,
32.0, 69.9, 125.8, 132.6, lit.;1 [α]D20 = À80.3, (c 1.77, CHCl3); lit.2
[α]2D0 = À77 (c 1.74, CHCl3).
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This study was partially financed by the European Regional
Development Fund under the European Sustainable Competi-
tiveness Programme for Northern Ireland.
’ REFERENCES
(1) Nicolaou, K. C.; Ding, H.; Richard, J.-A.; Chen, D. Y.-K. J. Am.
Chem. Soc. 2010, 132, 3815.
(2) Holub, N.; Neidh€ofer, J.; Blechert, S. Org. Lett. 2005, 7, 1227.
(3) Moody, T. S.; Taylor, S. Speciality Chemicals; Quartz Business
Media: Redhill, Surrey, U.K., 2009; p51.
86
dx.doi.org/10.1021/op200241u |Org. Process Res. Dev. 2012, 16, 82–86