Palladium-Catalyzed Cross Coupling of Arenes
J . Org. Chem., Vol. 64, No. 9, 1999 3269
mL of H2O; the aqueous layer was then extracted with 4 × 50
mL of Et2O, and the combined organic layers were dried over
MgSO4 and concentrated in vacuo. Purification of the residue
by flash chromatography (25 mm, 17 cm, 0-10% EtOAc/
hexane) gave 70 mg (86%) of 4-acetylbiphenyl as a yellow solid
and 7 mg (14%) of 4,4′-diacetylbiphenyl, the homocoupled
product. Recrystallization from absolute EtOH yielded pale
yellow needles: TLC Rf ) 0.29 (10% EtOAc/hexane); mp 119-
119.5 °C (lit. mp 119-120 °C (EtOH));2f IR (CCl4) 3081 (w),
3038 (w), 3000 (w), 2931 (m), 2850 (w), 1691 (m), 1569 (s), 1538
mL of 10% HCl and 30 mL of saturated NaCl and then dried
over MgSO4 and concentrated in vacuo. This yielded 2.131 g
(96%) of a yellow oil that was 96% pure by GC. Purification of
the residue by column chromatography (15 mm, 19 cm, 25%
Et2O/pentane) gave 1.956 g (88%) of a colorless oil: TLC Rf )
0.75 (25% Et2O/pentane); IR (CCl4) 3050 (w), 2988 (w), 2938
1
(w), 2869 (w), 1600 (m), 1556 (m), 1506 (s); H NMR (CDCl3)
δ 2.36 (s, 3H), 7.14 (A of AB quartet, J AB ) 8.6, 2H), 7.22 (B of
AB quartet, J AB ) 8.6, 2H); 13C NMR (CDCl3) δ 20.7, 118.8 (q,
J C-F ) 320), 121.0, 130.7, 138.5, 147.6; LRMS 241 ((M + 1),
4), 240 ((M+), 43), 107 (100), 77 (46); HRMS (EI) calcd for
C8H7O3F3S (M+) 240.0068, found 240.0061. The IR and 1H
NMR are identical to the spectral data found in ref 16, and
the LRMS is identical to data found in ref 17. Elemental
analysis data can be found in ref 16.
1
(s); H NMR δ 2.63 (s, 3H), 7.38 (t, J ) 7.3, 1H), 7.46 (t, J )
7.4, 2H), 7.61 (d, J ) 7.2, 2H), 7.67 (A of AB quartet, J AB
)
8.4, 2H), 8.02 (B of AB quartet, J AB ) 8.4, 2H); 13C NMR δ
26.6, 127.2, 128.2, 128.9, 135.9, 139.9, 145.8, 197.7; LRMS (EI)
197 ((M + 1), 10), 196 ((M+), 59), 181 (100), 153 (35), 152 (41);
HRMS (EI) calcd for C14H12O 196.0888 (M+);, found 196.0883.
The IR and 1H NMR are identical to the spectral data found
in ref 2f.
P h en yl Tr iflu or om eth a n esu lfon a te: TLC Rf ) 0.53 (10%
EtOAc/hexane); IR (CCl4) 3066 (w), 1602, 1488 (m), 1427 (s),
1248 (m), 1225 (m), 1206 (m), 1173 (m), 1145 (s); 1H NMR
(CDCl3) δ 7.25-7.27 (m, 2H), 7.38-7.40 (m, 1H), 7.43-7.45
En tr y 11, 4-Meth oxybip h en yl: TLC Rf ) 0.46 (10%
EtOAc/hexane); mp 83.5-85.5 °C (lit. mp 90 °C (EtOH));12 IR
(CCl4) 3081 (w), 3047 (w), 3006 (w), 2931 (w), 2856 (w), 2838
1
(m, 2H). The IR and H NMR are identical to the spectral data
found in ref 18. Additional spectral information (13C, 19F, and
GC/MS data) can be found in ref 19.
1
(w), 1563 (s), 1512 (s); H NMR (CDCl3) δ 3.83 (s, 3H), 6.95-
6.97 (m, 2H), 7.40 (t, J ) 7.7, 2H), 7.50-7.54 (m, 5H); 13C NMR
(CDCl3) δ 55.4, 114.2, 126.6, 126.7, 128.2, 128.7, 135.2; LRMS
185 ((M + 1), 15), 184 ((M+), 100), 169 (39), 141 (35), 115 (21);
HRMS (EI) calcd for C13H12O 184.0888 (M+),; found 184.0885.
The 1H NMR, 13C NMR, and LRMS are identical to the spectral
data found in ref 13.
4-Nitr op h en yl Tr iflu or om eth a n esu lfon a te: TLC Rf )
0.37 (25% Et2O/hexane); mp 50.5-52 °C (lit. mp 53-54 °C);20
IR (CCl4) 3119 (w), 3087 (w), 3006 (w), 1717 (s), 1620 (m), 1488
(m), 1436 (s), 1348 (s); 1H NMR (CDCl3) δ 7.45-7.48 (m, 2H),
8.34-8.37 (m, 2H); 13C NMR (CDCl3) 118.6 (q, J C-F ) 321),
122.5, 126.0, 147.2, 153.1. The IR and 1H NMR are identical
to the spectral data found in ref 20. Reference 20 also contains
En tr y 13, 4-Meth ylbip h en yl: TLC Rf ) 0.47 (10% Et2O/
pentane); mp 44.5-46.5 °C (lit. mp 49 °C (EtOH));14 IR (CCl4)
3081 (w), 3063 (w), 3038 (w), 2925 (w), 2863 (w), 1556 (s), 1531
1
HRMS data. IR and H NMR data can also be found in ref 2f.
LRMS data can be found in ref 17.
1
(s); H NMR (CDCl3) δ 2.38 (s, 3H), 7.23 (m, 2H), 7.30 (t, J )
4-Acetylp h en yl Tr iflu or om eth a n esu lfon a te: TLC Rf )
0.38 (25% Et2O/hexane); IR (CCl4) 3107 (w), 3070 (w), 3009
7.6, 1H), 7.41 (t, J ) 7.6, 2H), 7.48 (d, J ) 8.1, 2H), 7.58 (d, J
) 7.3, 2H); 13C NMR (CDCl3) δ 21.1, 127.0, 128.7, 129.5, 137.0,
138.4, 141.2; LRMS 169 ((M + 1), 19), 168 ((M+), 100), 167
(63), 165 (24), 149 (52), 90 (21); HRMS (EI) calcd for C13H12
168.0939 (M+), found 168.0945. The IR and 1H NMR are
identical to the spectral data found in ref 14.
1
(w), 1649 (s), 1600 (m); H NMR (CDCl3) δ 2.61 (s, 3H), 7.36
(A of AB quartet, J AB ) 8.8, 2H), 8.04 (B of AB quartet, J AB
)
8.8, 2H); 13C NMR (CDCl3) δ 26.3, 118.6 (q, J C-F ) 321), 121.4,
130.4, 136.8, 152.3, 195.9. The IR and 1H NMR are identical
to spectral data found in ref 2f. Elemental analysis results are
available in ref 2f.
En tr y 15, 3-Meth ylbip h en yl: TLC Rf ) 0.47 (10% Et2O/
pentane); IR (CCl4) 3093 (w), 3069 (s), 3031 (s), 2969 (m), 2931
4-Ca r bom eth oxyp h en yl Tr iflu or om eth a n esu lfon a te:
TLC Rf ) 0.35 (10% EtOAc/hexane); IR (CCl4) 3000 (w), 2954
(m), 2845 (w), 1924 (w), 1732 (s), 1604 (m), 1499 (m), 1430 (s),
1412 (s), 1284 (s); 1H NMR (CDCl3) δ 3.92 (s, 3H), 7.33 (m,
1
(s), 2869 (w), 1600 (s), 1575 (s), 1531 (m); H NMR (CDCl3) δ
2.28 (s, 3H), 7.23-7.28 (m, 4H), 7.32-7.35 (m, 3H), 7.39-7.43
(m, 2H); 13C NMR (CDCl3) δ 20.8, 126.1, 127.1, 127.6, 128.4,
129.1, 129.5, 130.1, 130.6; LRMS 169 ((M + 1), 17), 168 ((M+),
100), 167 (54), 165 (23), 152 (21); HRMS (EI) calcd for C13H12
168.0939 (M+), found 168.0941. The IR and 1H NMR are
identical to the spectral data found in ref 14.
2H), 8.13 (m, 2H); 13C NMR (CDCl3) δ 52.4, 118.7 (q, J C-F
)
320), 121.4, 130.4, 131.8, 152.5, 165.4; LRMS 285 ((M + 1),
8), 284 ((M+), 76), 253 (100), 189 (89), 123 (28), 95 (33), 70
(32); HRMS (EI) calcd for C9H7O5F3S (M+) 283.9966, found
283.9965. The 1H NMR is identical to spectral data found in
ref 21.
En tr y 17, 2-Meth ylbip h en yl: TLC Rf ) 0.59 (10% Et2O/
pentane); IR (CCl4) 3063 (m), 3025 (m), 2963 (w), 2925 (m),
1
2869 (w), 1600 (s), 1550 (s); H NMR (CDCl3) δ 2.27 (s, 3H),
1-Na p h th yl Tr iflu or om eth a n esu lfon a te: TLC Rf ) 0.51
(10% EtOAc/hexane); IR (CCl4) 3062 (m); 1602 (m), 1508 (m),
1418 (s), 1388 (s), 1231 (m), 1201 (m), 1145 (s), 1071 (m), 1030
(m), 901 (s); 1H NMR (CDCl3) δ 7.44-7.50 (m, 2H), 7.57-7.65
(m, 2H), 7.85-7.92 (m, 2H), 8.07 (d, J ) 8.2, 1H). The IR and
1H NMR are identical to spectral data found in ref 2c.
Elemental analysis results can also be found in ref 2f. 13C
NMR, LRMS, and elemental analysis results can also be found
in ref 22.
7.22-7.44 (m, 9H); 13C NMR (CDCl3) δ 21.9, 124.6, 127.5,
128.3, 129.0, 138.7, 141.6; LRMS 169 ((M + 1), 20), 168 ((M+),
100), 167 (85), 165 (41), 153 (34), 152 (28); HRMS (EI) calcd
1
for C13H12 168.0939 (M+), found 168.0937. The IR, H NMR,
and HRMS are identical to the spectral data found in ref 15.
Gen er a l P r oced u r e for th e P r ep a r a tion of Tr ifla tes
To Be Used in Cr oss Cou p lin g Rea ction s (En tr ies 26-
31). The triflates were prepared using a modification of a
procedure in Synthesis.11
4-Tolyl Tr iflu or om eth a n esu lfon a te. To a 0 °C solution
of 1.002 g (9.27 mmol) of p-cresol in 5.3 mL of pyridine was
added 2.37 mL (14.09 mmol) of triflic anhydride. The reaction
turned brownish-yellow upon addition of the triflic anhydride.
The reaction was stirred at room temperature for 1.75 h. The
resulting mixture was quenched by the addition of 30 mL of
H2O; the aqueous layer was then extracted with 2 × 30 mL of
Et2O, and the combined organic layers were washed with 30
Cr oss Cou p lin g Rea ction s (En tr ies 28-31). En tr y 28,
4-Nitr obip h en yl: TLC Rf ) 0.56; mp 111.5-112 °C (lit. mp
113-115 °C (MeOH));23 IR (CCl4) 3067 (w), 3034 (w), 1604 (m),
(16) Cabri, N.; Candiani, A.; Bedeschi, A.; Penco, S.; Santi, R. J .
Org. Chem. 1992, 57, 1481-1486.
(17) Derocque, J .-L.; J ochem, M. Org. Mass. Spectrom. 1977, 12,
479-487.
(18) Anders, E.; Stankowiak, M. Synthesis 1984, 1039-1041.
(19) Olah, G. A.; Wu, A. Synthesis 1991, 204-206.
(20) Stille, J . K.; Echavarren, A. M.; Williams, R. M.; Hendrix, J .
A. Org. Synth. 1993, 71, 97-106.
(21) Percec, V.; Bae, J .-Y.; Zhao, M.; Hill, D. H. J . Org. Chem. 1995,
60, 176-185.
(22) Crisp, G. T.; Papadopoulos, S. Aust. J . Chem. 1988, 41, 1711-
1715.
(23) Wallow, T. I.; Novak, B. M. J . Org. Chem. 1994, 59, 5034-
5037.
(12) Neeman, M.; Caserio, M. C.; Roberts, J . D.; J ohnson, W. S.
Tetrahedron 1959, 6, 36-47.
(13) Lipshutz, B. H.; Siegmann, K.; Garcia, E.; Kayser, F. J . Am.
Chem. Soc. 1993, 115, 5, 9276-9282.
(14) Rao, M. S. C.; Rao, G. S. K. Synthesis 1987, 231-233.
(15) Rieke, R. D.; Schulte, L. D.; Dawson, B. T.; Yang, S. S. J . Am.
Chem. Soc. 1990, 112, 8388-8398.