Reaction Enthalpies for M+L ) M+ + L
J. Phys. Chem., Vol. 100, No. 33, 1996 14227
(6) Kebarle, P. Annu. ReV. Phys. Chem. 1977, 28, 445.
(7) (a) Roux, B.; Karplus, M. J. Phys. Chem. 1991, 95, 4856. (b) Roux,
B.; Karplus, M. J. Am. Chem. Soc. 1993, 115, 3250. (c) Roux, B.; Karplus,
M. J. Comput. Chem. 1995, 16, 690.
(8) Sunner, J.; Kebarle, P. J. Am. Chem. Soc. 1984, 106, 6135.
(9) Dzidic, I.; Kebarle, P. J. Phys. Chem. 1970, 74, 1466.
(10) Davidson, W. R.; Kebarle, P. J. Am. Chem. Soc. 1976, 98, 6125.
(11) Yamashita, M.; Fenn, J. B. J. Phys. Chem. 1984, 88, 4451. Fenn,
J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science
1985, 246, 64.
(12) (a) Jayaweera, P.; Blades, A. T.; Ikonomou, M. G.; Kebarle, P. J.
Am. Chem. Soc. 1990, 112, 2452-2454. (b) Blades, A. T.; Jayaweera, P.;
Ikonomou, M. G.; Kebarle, P. J. Chem. Phys. 1990, 92, 2900-2906. (c)
Blades, A. T.; Jayaweera, P.; Ikonomou, M. G.; Kebarle, P. Int. J. Mass
Spectrom. Ion Processes 1990, 102, 251-267. (d) Blades, A. T., Jayaweera,
P.; Ikonomou, M. G.; Kebarle, P. Int. J. Mass Spectrom. Ion Processes
1990, 101, 325-336.
(13) Bruins, A. P.; Covey, T. R.; Henion, J. D. Anal. Chem. 1987, 59,
2642. Covey, T. R.; Bonner, R. F.; Shushan, B. I.; Henion, J. D. Rapid
Commun. Mass Spectrom. 1988, 2, 249. Huang, E. C.; Henion, J. D. J.
Am. Soc. Mass Spectrom. 1990, 1, 158.
(14) Blades, A. T.; Kebarle, P. J. Am. Chem. Soc. 1994, 116, 10761.
(15) Smith, R. D.; Loo, J. A.; Edmonds, C. G.; Barinaga, C. J.; Udseth,
H. R. Anal. Chem. 1990, 62, 882.
(16) Klassen, J.; Blades, A. T.; Kebarle, P. J. Phys. Chem. 1995, 99,
15509.
(17) Klobukowski, M. Can. J. Chem. 1992, 70, 589.
(18) Armentrout, P. B. Thermochemical Measurements by Guided Ion
Beam Mass Spectrometry. In AdVances in Gas Phase Ion Chemistry;
Adams, N., Babcock, L. M., Eds.; JAI Press Inc.: Greenwich, CT, 1992;
Vol. 1, p 83.
(19) Sunderlin, L. S.; Wang, D.; Squires, R. R. J. Am. Chem. Soc. 1993,
115, 12060. Mazinelli, P. J.; Paulino, J. A.; Sunderlin, L. S.; Wenthold, P.
G.; Poutsma, J. C.; Squires, R. R. Int. J. Mass Spectrom. Ion Processes
1994, 130, 89.
succinamide where a zwitterion structure is not expected and
glycylglycine also supports this view.
Assuming that the glycylglycine complex has the zwitterion
structure, one might be concerned that structure VI will not
provide the correct frequencies for the threshold fitting proce-
dure. However, the frequencies of the zwitterion structure and
structure VI will not be all that different and since the fitting
procedure is not very sensitive to the frequencies, the error will
be small. Concerning the transition state, the choice of
frequencies will be the same for both cases.
One may ask whether the gas phase experiments can be
extended to complexes which more closely model the interac-
tions of the sodium and potassium ions in the gramicidin
channel. Achieving a close correspondence seems impossible
at the present time. However, the gas phase experimental data
may provide some limiting complexation energy values. Ac-
cording to 2D NMR evidence35 and theoretical work,2-4 the
ion-channel interactions are principally due to interactions with
four carbonyl oxygens of the peptide backbone and two water
molecules which accompany the ion. A crude model for the
optimum complexation energy may be provided by the com-
plexation energy of the sodium ion with two suitable dicarbonyl
molecules, such as glycylglycine amide (GGAm) and two water
molecules, leading to Na+(GGAm)2(H2O)2. Experimental work
presently underway in our laboratory has shown that such a
complex can be produced in the gas phase. The dihydration of
the complex Na+(GGAm)2 can be determined by ion equilibria
measurements,16 while the complexation energies of the Na+-
(GGAm)2 would be amenable to CID threshold measurements
and also ion molecule equilibria, for the addition of the second,
less strongly bonded GGAm molecule. Determination of the
free energy changes rather than only the enthalpy changes will
be desirable because the transfer of the sodium ion from an
aqueous medium to the transmembrane channel depends on the
free energy change.
(20) Anderson, S. G.; Blades, A. T.; Klassen, J. S.; Kebarle, P. Int. J.
Mass Spectrom. Ion Processes 1995, 141, 217.
(21) Reid, N. M.; Buckley, J. A.; French, J. B.; Poon, C. C. AdV. Mass
Spectrom. B 1979, 8, 1843.
(22) Dalleska, N. F.; Honma, K.; Armentrout, P. B. J. Am. Chem. Soc.
1993, 115, 12125.
(23) Chupka, W. A. J. Chem. Phys. 1959, 30, 191.
(24) Loh, S. K.; Hales, D. A.; Lian, L.; Armentrout, P. J. Chem. Phys.
1989, 90, 5466. Hales, D. A.; Lian, L.; Armentrout, P. Int. J. Mass
Spectrom. Ion Processes 1990, 102, 269.
(25) Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions; Wiley
Interscience: New York, 1972.
(26) Wenthold, P. G.; Squires, R. R. J. Am. Chem. Soc. 1994, 116, 6401.
(27) More, M. B.; Glendening, E. D.; Ray, D.; Feller, D.; Armentrout,
P. B. J. Phys. Chem. 1996, 100, 1605.
Acknowledgment. The present work was supported by
grants from the Canadian National Sciences and Engineering
Research Council NSERC. The authors are indebted to Profes-
sor P. Armentrout for making the CRUNCH program available
to them and for informative discussions with Professor P.
Armentrout and Professor R. R. Squires. The authors are also
indebted to Professor B. Roux, who provided the impetus for
this study.
(28) Jensen, F. J. Am. Chem. Soc. 1992, 114, 9533.
(29) Taft, R. W.; Anvia, F.; Gal, J. F.; Walsh, S.; Capon, M.; Holmes,
M. C.; Hosh, K.; Oloumi, G.; Vasanwala, R.; Yazdani, S. Pure Appl. Chem.
1990, 62, 17.
(30) The Li+ affinity differences given in ref 29 correspond to free
energy differences, i.e., changes in the -∆G°1 at 298 K for reaction 1.
(31) Bouchonnet, S.; Hoppilliard, Y. Org. Mass Spectrom. 1992, 27,
71.
References and Notes
(32) Weller, T.; Lochman, R.; Meiler, W. J. Mol. Struct. 1982, 90, 81.
(33) Bojesen, G.; Breindahl, T.; Andersen, U. N. Org. Mass Spectrom.
1993, 28, 1448.
(34) Guo, B. C.; Conklin, B. J.; Castleman, A. W., Jr. J. Am. Chem.
Soc. 1989, 111, 6506.
(35) Arseniev, A. S.; Bystrov, V. F.; Ivanov, T. V.; Ovchinmikov, Y.
A. FEBS Lett. 1985, 186, 168.
(36) Beauchamp, J. L., private communication.
(1) Andersen, O. S. Annu. ReV. Physiol. 1984, 46, 531.
(2) Pullman, A. Q. ReV. Biophys. 1987, 20, 173.
(3) Jordan, P. C. J. Phys. Chem. 1987, 91, 6582.
(4) (a) Roux, B.; Karplus, M. Biophys. J. 1991, 59, 961. (b) Roux,
B.; Karplus, M. J. Phys. Chem. 1991, 95, 4856. (c) Roux, B.; Karplus, M.
J. Am. Chem. Soc. 1993, 115, 3250.
(5) Kistenmacher, H.; Popkie, H.; Clementi, E. J. Chem. Phys. 1973,
58, 1689. Chandrasekhar, J.; Spellmeyer, D. C.; Jorgensen, W. L. J. Am.
Chem. Soc. 1984, 106, 903.
JP9608382