Communication
RSC Advances
62, 2439–2463; (c) R. A. Periana, G. Bhalla, W. J. Tenn,
K. J. H. Young, X. Y. Liu, O. Mironov, C. J. Jones and
V. R. Ziatdinov, J. Mol. Catal. A: Chem., 2004, 220, 7–25; (d)
M. S. Chen and M. C. White, Science, 2007, 318, 783–787;
(e) M. C. White, Science, 2012, 335, 807–809.
4 H. Lago-Santome, R. Meana-Paneda and R. Alonso, J. Org.
Chem., 2014, 79, 4300–4305.
5 L. N. Mander and C. M. Williams, Tetrahedron, 2003, 59,
1105–1136.
6 (a) P. H. J. Carlsen, T. Katsuki, V. S. Martin and
K. B. Sharpless, J. Org. Chem., 1981, 46, 3936–3938; (b)
M. Kasai and H. Ziffer, J. Org. Chem., 1983, 48, 2346–2349;
(c) D. M. Piatak, G. Herbst, J. Wicha and E. Caspi, J. Org.
Chem., 1969, 34, 116; (d) M. T. Nunez and V. S. Martin, J.
Org. Chem., 1990, 55, 1928–1932; (e) D. C. Ayres and
A. M. M. Hossain, J. Chem. Soc., Perkin Trans. 1, 1975, 707–
710.
7 (a) D. Habibi and A. R. Faraji, Cron. Chim., 2013, 16, 888–896;
(b) M. Arshadi, M. Ghiaci, A. A. Ensa, H. Karimi-Maleh and
S. L. Suib, J. Mol. Catal. A: Chem., 2011, 338, 71–83; (c)
F. Rajabi, R. Luque, J. H. Clark, B. Karimi and
D. J. Macquarrie, Catal. Commun., 2011, 12, 510–513; (d)
B. K. Das and J. H. Clark, Chem. Commun., 2000, 605–606;
(e) J. Y. Qi, H. X. Ma, X. J. Li, Z. Y. Zhou, M. C. K. Choi,
A. S. C. Chan and Q. Y. Yang, Chem. Commun., 2003, 1294–
1295.
Experimental
General Procedure for catalytic oxidation
A mixture of Oxone (516 mg, 0.84 mmol), the corresponding
substrate (0.07 mmol) and the cobalt catalyst (1.2 mg, 5 mol%)
were added to a NMR tube with a capillary containing 3-(tri-
methylsilyl) propionic-2,2,3,3-d4 acid sodium salt as the internal
standard and dissolved in deuterium oxide (1–2 mL). Aer
collection of the initial 1H NMR spectra, the NMR tube was
placed in an oil bath preheated to the required temperature.
The reaction was monitored by the 1H NMR spectrum at
different time intervals. In reactions where complete conversion
was too rapid even at room temperature the initial 1H NMR
spectra were taken prior to addition of the cobalt catalyst or by
keeping the NMR tube in an ice bath. The yield was determined
by comparative integration of the product and starting material
peaks to the internal standard in the 1H NMR spectrum.
2-phenyl pyridine was used as a representative substrate, and
the isolated yield of 2-picolinic acid was obtained (see ESI† for
details).15 Product identities in all the cases were determined by
addition of authentic commercially available compounds.
Acknowledgements
The authors acknowledge support from the Chemical Sciences,
Geosciences, and Biosciences Division, Office of Basic Energy
Sciences, Office of Science, U.S. Department of Energy (DE-
FG02-07ER15909). We would like to thank Dr Matthieu Koepf
for his suggestions and discussions.
8 Y. Sasson, G. D. Zappi and R. Neumann, J. Org. Chem., 1986,
51, 2880–2883.
9 A. Shaabani, P. Mirzaei, S. Naderi and D. G. Lee, Tetrahedron,
2004, 60, 11415–11420.
10 (a) R. A. Sheldon and I. W. C. E. Arends, Adv. Synth. Catal.,
2004, 346, 1051–1071; (b) R. Zhao, J. Lind, G. Merenyi and
T. E. Eriksen, J. Am. Chem. Soc., 1994, 116, 12010–12015.
11 (a) J. I. van der Vlugt, Eur. J. Inorg. Chem., 2012, 363–375; (b)
O. R. Luca and R. H. Crabtree, Chem. Soc. Rev., 2013, 42,
1440–1459.
12 (a) Z. Wang, W. D. Chandler and D. G. Lee, Can. J. Chem.,
1998, 76, 919–928; (b) K. B. Wiberg and S. K. Mukherje, J.
Am. Chem. Soc., 1974, 96, 6647–6651; (c) O. Pestovsky and
A. Bakac, J. Am. Chem. Soc., 2004, 126, 13757–13764; (d)
K. Meyer and J. Rocek, J. Am. Chem. Soc., 1972, 94, 1209; (e)
J. Rocek and A. E. Radkowsky, J. Am. Chem. Soc., 1973, 95,
7123–7132; (f) J. Rocek and D. E. Aylward, J. Am. Chem.
Soc., 1975, 97, 5452–5456.
13 M. J. Perkins, Chem. Soc. Rev., 1996, 25, 229.
14 R. Chakrabarty, S. J. Bora and B. K. Das, Inorg. Chem., 2007,
46, 9450–9462.
15 (a) C. B. Bennett and G. S. Black, US Pat., 2578672, 1951; (b)
A. F. Tuyun, H. Uslu, S. Gokmen and Y. Yorulmaz, J. Chem.
Eng. Data, 2011, 56, 2310–2315.
Notes and references
1 (a) G. P. Anipsitakis and D. D. Dionysiou, Environ. Sci.
Technol., 2003, 37, 4790–4797; (b) G. P. Anipsitakis and
D. D. Dionysiou, Environ. Sci. Technol., 2004, 38, 3705–
3712; (c) D. L. Ball and J. O. Edwards, J. Phys. Chem., 1958,
62, 343–345; (d) J. Kim and J. O. Edwards, Inorg. Chim.
Acta, 1995, 235, 9–13; (e) Z. M. Zhang and J. O. Edwards,
Inorg. Chem., 1992, 31, 3514–3517.
2 (a) G. P. Anipsitakis, D. D. Dionysiou and M. A. Gonzalez,
Environ. Sci. Technol., 2006, 40, 1000–1007; (b)
G. P. Anipsitakis, E. Stathatos and D. D. Dionysiou, J. Phys.
Chem. B, 2005, 109, 13052–13055; (c) K. H. Chan and
W. Chu, Water Res., 2009, 43, 2513–2521; (d) J. Fernandez,
V. Nadtochenko and J. Kiwi, Chem. Commun., 2003, 2382–
2383; (e) J. Madhavan, P. Maruthamuthu, S. Murugesan
and M. Ashokkumar, Appl. Catal., A, 2009, 368, 35–39; (f)
M. Pagano, A. Volpe, G. Mascolo, A. Lopez, V. Locaputo
and R. Ciannarella, Chemosphere, 2012, 86, 329–334; (g)
Y. F. Rao, M. J. Chen and M. R. Zhou, J. Adv. Oxid.
Technol., 2014, 17, 145–151.
3 (a) R. H. Crabtree, J. Organomet. Chem., 2004, 689, 4083–
4091; (b) A. R. Dick and M. S. Sanford, Tetrahedron, 2006,
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 49395–49399 | 49399