Please do not adjust margins
Green Chemistry
DOI: 10.1039/C6GC02118B
COMMUNICATION
Journal Name
conclude that an optimized molar ratio of HMF/base is
necessary and important.
8
9
1
G. Yi, S. P. Teong, X. Li and Y. Zhang, ChemSusChem., 2014, 7,
131-2137.
J. L. Li Deng, D.-M. Lai, Y. Fu and Q.-X. Guo, Angew. Chem. Int.
Ed., 2009, 48, 6529-6532.
V. Tsanaktsis, D. N. Bikiaris, N. Guigo, S. Exarhopoulos, D. G.
Papageorgiou, N. Sbirrazzuoli and G. Z. Papageorgiou, RSC
Adv., 2015, 5, 74592-74604.
2
0
1
1
1
1
2
3
A. Gandini, A. J. D. Silvestre, C. P. Neto, A. F. Sousa and M. n.
Gomes, J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 295-298.
Claude Moreaua, M. N. Belgacem and A. Gandini, Topics in
Catalysis, 2004, 27, 11-30.
A. J. J. E. Eerhart, W. J. J. Huijgen, R. J. H. Grisel, J. C. v. d. Waal,
E. d. Jong, A. d. S. Dias, A. P. C. Faaij and M. K. Patel, RSC Adv.,
2
014, 4, 3536-3549.
1
1
1
4
5
6
A. J. J. E. Eerhart, A. P. C. Faaij and M. K. Patel, Energy Environ.
Sci., 2012, 5, 6407-6422.
T. Miura, H. Kakinuma, T. Kawano and H. Matsuhisa, U.S. Pat.,
US-7411078, 2008.
C. Carlini, P. Patrono, A. M. R. Galletti, G. Sbrana and V. Zima,
App. Catal. A: General, 2005, 289, 197-204.
Figure 3: Recycle test of the NNC-900 catalyst. Reaction conditions: 0.63 mmol HMF in
-1
1
2 3
0 mL water, 0.2 g NNC-900 catalyst, the molar ratio HMF/K CO of 1:3, 100 mL·min
o
oxygen at ambient pressure; reaction temperature and reaction time are 80 C and 48
hr, respectively.
We have synthesized a new metal-free and nitrogen- 17 W. P. Dijkman, D. E. Groothuis and M. W. Fraaije, Angew.
containing nanoporous carbon with controllable amounts of
Chem. Int. Ed., 2014, 53, 6515-6518.
nitrogen configuration through a simple pyrolysis of ZIF-8 18 Y. Y. Gorbanev, S. K. Klitgaard, J. M. Woodley, C. H. Christensen
and A. Riisager, ChemSusChem., 2009, 2, 672-675.
O. Casanova, S. Iborra and A. Corma, ChemSusChem., 2009, 2,
nanoparticles. Unlike conventional nitrogen-doped carbon
materials with low nitrogen-loading density, the ZIF-8 derived
nanoporous nitrogen-doped carbon (NNC) enhances the
loading amount of nitrogen, especially for the formation of
1
2
2
2
9
0
1
2
1
138-1144.
M. A. Lilga, R. T. Hallen and M. Gray, Top. Catal., 2010, 53,
264-1269.
1
o
graphitic nitrogen (N-Q) after calcination at 900 C. The
Sara E. Davis, Levi R. Houk, Erin C. Tamargo, Abhaya K. Datye
and R. J. Davis, Catal. Today, 2011, 160, 55-60.
A. Jain, S. C. Jonnalagadda, K. V. Ramanujachary and A.
Mugweru, Catal. Comm., 2015, 58, 179-182.
increased N-Q structure in the NNC-900 catalyst was found to
be useful for catalyzing aerobic oxidation of HMF to FDCA with
o
a maximum yield of 80% at 80 C and ambient pressure. The
pathway of HMF-to-FDCA conversion is also estimated, where 23 Z. Zhang and K. Deng, ACS catal., 2015, 5, 6529-6544.
HMFCA and FFCA are the main intermediates. The presenting 24 Y. Zheng, Y. Jiao, M. Jaroniec, Y. Jin and S. Z. Qiao, Small, 2012,
green, economical and effective heterogeneous NNC catalyst
would have much potential in not only biomass conversion but
also other oxidation-involved organic reactions.
8, 3550-3566.
2
2
5
6
M. Zhang and L. Dai, Nano Energy, 2012, 1, 514-517.
S. Wang, L. Zhang, Z. Xia, A. Roy, D. W. Chang, J.-B. Baek and a.
L. Dai, Angew. Chem. Int. Ed., 2012, 51, 4209-4212.
H. Watanabe, S. Asano, S.-i. Fujita, H. Yoshida and M. Arai, ACS
Catal., 2015, 5, 2886-2894.
2
2
2
3
3
7
8
9
0
1
Acknowledgements
C. K. Chua and M. Pumera, Chem. Eur. J. , 2015, 21, 12550-
The authors would like to thank the Ministry of Science and
Technology (MOST), Taiwan (104-2628-E-002-008-MY3, 105-
2221-E-002-227-MY3, and 105-2218-E-155-007) and the
National Taiwan University (105R7706) for the funding support.
1
2562.
J. Xu, K. Shen, B. Xue, Y.-X. L and Y. Cao, Catal. Lett., 2013, 143,
00-609.
6
X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo
and H. Dai, Science, 2009, 34, 768-771.
R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M.
O'Keeffe and O. M. Yaghi, Science, 2008, 319, 939-943.
References
1
J. N. Chheda, G. W. Huber and J. A. Dumesic, Angew. Chem. Int. 32 J. Cravillon, R. Nayuk, S. Springer, A. Feldhoff, K. Huber and M.
Ed., 2007, 46, 7164-7183.
Wiebcke, Chem. Mater., 2011, 23, 2130-2141.
S. M. Sen, D. M. Alonso, S. G. Wettstein, E. I. Gurbuz, C. A. 33 M. Jian, B. Liu, R. Liu, J. Qu, H. Wangc and X. Zhang, RSC Adv.,
2
Henao, J. A. Dumesic and C. T. Maravelias, Energy Environ. Sci.,
2015, 5, 48433-48441.
2
012, 5, 9690-9697.
34 N. L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito
and Y. Yamauchi, Chem. Commun., 2013, 49, 2521-2523.
35 L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Lia and M.
Hong, Nanoscale, 2014, 6, 6590-6602.
3
4
5
6
7
J. C. Serrano-Ruiz, R. Luque and A. Sepu´lveda-Escribano,
Chem. Soc. Rev., 2011, 40, 5266-5281.
R.-J. v. Putten, J. C. v. d. Waal, E. d. Jong, C. B. Rasrendra, H. J.
Heeres and J. G. d. Vrie, Chem. Rev., 2013, 113, 1499-1597.
36 F. Zheng, Y. Yang and Q. Chen, Nat. Comm. , 2014, 5, 5261.
T. Thananatthanachon and T. B. Rauchfuss, Angew. Chem. Int. 37 Y.-T. Liao, J. E. Chen, Y. Isida, T. Yonezawa, W.-C. Chang, S. M.
Ed., 2010, 49, 6616-6618.
Alshehri, Y. Yamauchi and K.-C. W .Wu, ChemCatChem, 2016,
Y. Roma´n-Leshkov, C. J. Barrett, Z. Y. Liu and J. A. Dumesic,
Nature, 2007, 447, 982-986.
8, 502-509.
M. L. Ribeiro and U. Schuchardt, Catal. Comm., 2003, 4, 83-86.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins