Our material P2 and related materials we have prepared15 are
also subjects for other studies including rearrangements,
condensations, ion exchange and binding of biological mole-
cules.
We thank EPSRC for a quota studentship to Bradley Ormsby,
and Grant GR/M78281; Greg Coumbarides (QMW), Peter
Haycock and Harold Toms of the ULIRS High Field NMR
Service at QMW, Abil Aliev ULIRS solid state NMR service at
University College London, for NMR. We also thank the
University of London Central Research Fund and the Faculty
Research Support Fund of Queen Mary and Westfield College
for support.
23.1, 33.6;
29Si CP MAS NMR d 266.2; 31P CP MAS NMR d 33.5;
2
Average formula based on
PO(OH) CH CH SiO (OH)]
P2·2H O C 16.3, H 5.1, P 10.5. Found C 14.2, H 4.3, P 10.5%; BET surface
area 354 m g ; micropore surface area 345 m g ; micropore volume
T
2
environments [(HO)SiCH CH-
2
2
2
2
n
C+P = 1.55, Found C+P = 1.35; Calculated
2
2
21
2
21
3
21
3
21
0
.192 cm g ; total pore volume 0.219 cm g
.
∑
Control experiments were carried out with microporous and mesoporous
silicas prepared by standard methods from TEOS and with samples of these
treated with concentrated HCl and washed in the manner described above
for P2.
1 (a) P. M. Price, J. H. Clark and D. J. Macquarrie, J. Chem. Soc., Dalton
Trans., 2000, 101; (b) J. H. Clark and D. Macquarrie, Chem. Commun.,
998, 853; (c) D. A. Loy and K. J. Shea, Chem. Rev., 1995, 95, 1431; (d)
R. J. P. Corriu and D. Leclercq, Angew. Chem., Int. Ed. Engl., 1996, 35,
420.
I. Rodriguez, S. Iborra, A. Corma, F. Rey and J. L. Jorda, J. Chem. Soc.,
Chem. Commun., 1999, 593; J. A. Elings, R. Ait-Meddour, J. H. Clark
and D. J. Macquarrie, J. Chem. Soc., Chem. Commun., 1998, 2707; R.
Ciriminna, J. Blum, D. Anvir and M. Pagliaro, J. Chem. Soc., Chem.
Commun., 2000, 1441; Y. Wang, T. Ju Su, R. Green, Y. Tangt, D.
Styrkas, T. N. Danks, R. Bolton and J. R. Lu, J. Chem. Soc., Chem.
Commun., 2000, 587; S. J. Bae, S.-Wook Kim, T. Hyeon and B. Moon
Kim, J. Chem. Soc., Chem. Commun., 2000, 31.
3 H. W. Oviatt, K. J. Shea, S. Kalluri, Y. Shi, W. H. Steier and L. R.
Dalton, Chem. Mater., 1995, 7, 493; A.-C. Franville, D. Zambon and R.
Mahiou, Chem. Mater., 2000, 12, 428.
4 S. Brandes, R. J. P. Corriu, F. Denat, G. Dubois, R. Guilard and C. Reye,
J. Chem. Soc., Chem. Commun., 1999, 2283.
5 C. Chuit, R. J. P. Corriu, G. Dubois and C. Reye, J. Chem. Soc., Chem.
Commun., 1999, 723.
6 P. Audebert, P. Calas, G. Cerveau, R. J. P. Corriu and N. Costa,
J. Electroanal. Chem., 1994, 372, 275.
7 R. J. P. Corriu, J. J. E. Moreau, P. Thepot and M. Wong Chi Man, Chem.
Mater., 1992, 4, 1217.
8 B. Y. Hsu and S. F. Cheng, Microporous Mesoporous Mater., 1998, 21,
505.
9 C. P. Bezouhanova and F. A. Jabur, J. Mol. Catal., 1994, 87, 39.
10 Y. Toyoshi, T. Nakato and T. Okuhara, Bull. Chem. Soc. Jpn., 1998, 71,
2817; Y. Toyoshi, T. Nakato, R. Tamura, H. Takahashi, H. Tsue, K.
Hirao and T. Okuhara, Chem. Lett., 1998, 135.
11 F. A. Jabur, V. J. Penchev and C. P. Bezoukhanova, J. Chem. Soc.,
Chem. Commun., 1994, 1591.
1
1
Notes and references
1,4-Bis(triethoxysilyl)-2-(diethylphosphonato)butane 1: 1,4-bis(tri-
ethoxysilyl)but-2-ene (30.0 g, 78.8 mmol) and diethyl phosphite (21.8 g,
58 mmol, 20.3 ml) and di-tert-butyl peroxide (0.58 g, 3.9 mmol, 0.72 ml)
2
‡
1
were heated at 140 °C for 18 h under nitrogen. The resultant mixture was
distilled under reduced pressure to yield 1 (22.5 g, 55%) bp 147 °C, 0.4 mm
+
Hg; Calcd C 46.3, H 9.1. Found C 46.1, H 9.0; m/z 541.5 (M + Na) 519.5
+
+
(
2 3 2
M ), 473.4 (M 2 OCH CH ) ; Calcd for C20H48Si P 519.2574; Found
6
5
1
2
9
10
5
19.2569;
CH
ronments as appropriate H(CDCl
CH
t, 6 H, CH
CH
C (CDCl
Hz), 16.30, 16.39 (d, CH
NMR:
[( CH
3
CH
2
O)
3
Si CH
2
CH{PO(O CH
2
CH
3
)
2
}-
3
4
7
8CH
2
CH
2
Si(O CH
2
3 3
)
] superscripts indicate proton or carbon envi-
1
1
3
2
) d 0.51–1.03 (complex m, 4H, CH ,
4
8
3
6
3
2
), 1.05 (t, 9 H, CH
3
, JHH 8 Hz), 1.06 (t, 9 H, CH
, JHH 8 Hz), 1.56–1.91 (complex m, 3H, CH, CH
3
, JHH 8 Hz), 1.27
10
3
2
3
(
3
2
), 3.66 (q,
, JPH 10 Hz);
7
3
5
3
9
3
2
, JHH 8 Hz), 3.69 (q, CH
2
3
, JHH 8 Hz), 3.95 (m, CH
2
13
4
1
2
3
) d 8.17 (d, CH
2
2
, JPC 4 Hz ), 8.92, 9.01 (d, CH
2
, JPC 6.5
), 23.56 (s,
), 58.29
) d 245.65 (s,
) d 36.13 (s).
10
6
8
3
, JPC 6.5 Hz ), 18.10 (s, CH
, JPC 4 Hz), 32.16, 34.35 (d, CH, JPC 138 Hz), 58.09 (s, CH
3
, CH
3
3
2
2
5
CH
2
2
7
9
2
29
(
s, CH
2
), 61.16, 61.25 (d, CH
2
, JPC 6.5 Hz); Si (CDCl
3
4
1
3
31
C-Si), 247.66, 247.94 (d, C-Si, JPSi 40 Hz); P (CDCl
P1: Compound 1 (4.45 g, 8.58 mmol), THF (37 ml) and 1 M HCl (0.8 ml)
3
§
were stirred under dynamic nitrogen for 1 h and stored in a polythene bottle.
Gelation occurred after 11 d. The transparent monolithic gel obtained was
air dried for 1 week and then dried at 60 °C in an oven for 24 h. A transparent
monophasic crack-free glass was produced. This was powdered, washed
with water, ethanol and ether consecutively, and then dried under vacuum
1
3
29
at 120 °C for 24 h; C CP MAS d 14.3, 16.9, 23.2, 33.2, 63.1; Si CP MAS
31
2
d 263.5; P CP MAS d 34.5; Calculated average formula based on T
environments [(HO)SiCH CHPO(OEt) CH CH SiO (OH)] C+P = 3.1,
Found C/P = 2.8; Calculated for P1·3H O C, 26.2; H, 6.3, P 8.5. Found C
2
2
2
2
2
n
12 M. A. Kakimoto, T. Seri and Y. Imai, Bull. Chem., Soc. Jpn., 1988, 61,
2643.
2
2
¶
6.6, H 6.0, P 9.6%.
P2: Powdered P1 (1.00 g) and concentrated HCl (100 ml) were refluxed
13 T. K. Shioyama and O. K. Bartlesville, Phillips Petroleum Company,
US1980000113948 April 7, 1981.
for 24 h. The mixture was filtered through a fritted funnel and washed with
excess H O to remove all traces of HCl, followed by ethanol and ether. The
residue was dried under vacuum at 120 °C for 24 h; C CP MAS d 16.5,
14 W. M. Dehn and K. E. Jackson, J. Am. Chem., Soc., 1933, 55, 4285.
15 A. Aliev, D. Li Ou, B. Ormsby and A. C. Sullivan, J. Mat. Chem., 2000,
10, 2758.
2
13
68
Chem. Commun., 2001, 67–68