10.1002/cctc.201801155
ChemCatChem
FULL PAPER
cyclohexene yield and selectivity came back to 38.4% and 54.8%,
respectively. After the six reaction cycles, the total TON for Ru
reaches as high as ca. 5000 mol mol-1, which is higher than that
in the reported conventional biphasic counterpart system (1493
mol mol-1).[19]
Young Sanjin Scholar and Doctoral education innovation project
in Shanxi Province (2017-8).
Keywords: biphasic reactions• Pickering emulsions • droplet
size • selective hydrogenation
[1]
[2]
[3]
[4]
[5]
a) W. Keim, Green Chem. 2003, 5, 105−111; b) P. Pollet, R. J. Hart, C.
A. Eckert and C. L. Liotta, Acc. Chem. Res. 2010, 43, 1237−1245.
a) C. J. Li, L. Chen, Chem. Soc. Rev. 2006, 35, 68−82; b) S. Minakata,
M. Komatsu, Chem. Rev. 2009, 109, 711−724.
Conclusions
In summary, we have successfully demonstrated that the key
parameters of biphasic catalysis reactions including the droplet
size and droplet distance can be tuned with the Pickering
emulsion strategy. Such a tuning is curial for the mass transport-
sensitive, multistep catalysis reactions such as selective
hydrogenation of benzene. As the case study shows, the
Pickering emulsion system gave much higher cyclohexene
selectivity (51.2%) and yield (43.3%) than the conventional
biphasic system even under lower-speeded stirring. The catalyst
together with the solid emulsifier could be recycled effectively.
After six reaction cycles, the selectivity and yield of cyclohexene
were still as high as 54.8% and 38.4%, respectively. Impressively,
this strategy and the case study presented here will help to
understand the behavior of biphasic catalysis and push biphasic
reactions toward a more efficient and controllable level because
it enables precise control of the key parameters of biphasic
reactions.
H. G. Cents, D. W. F. Brilman, G. F. Versteeg, Ind. Eng. Chem. Res.
2004, 43, 7465−7475.
H. J. Sun, W. Guo, X. L. Zhou, Z. H. Chen, Z. Y. Liu, S. C. Liu, Chin. J.
Catal. 2011, 32, 1−16.
a) A. Kumar, S. Hartland, Ind. Eng. Chem. Res. 1996, 35, 2682−2695;
b) A. Bąk, W. Podgórska, Chem. Eng. Sci. 2012, 74, 181−191.
H. Spod, M. Lucas, P. Claus, ChemCatChem 2016, 8, 2659−2666.
a) X. Yan, H. Y. Cheng, R. N. Zare, Angew. Chem. 2017, 129,
3616−3619; Angew. Chem., Int. Ed. 2017, 56, 3562−3565; b) S. P. Liu,
D. M. Li, Chem. Eng. Sci. 1999, 54, 5667−5675; c) C. W. Angle, H. A.
Hamza, AIChE J. 2006, 52, 2639−2650; d) M. J. Nieves-Remacha, A. A.
Kulkarni, K. F. Jensen, Ind. Eng. Chem. Res. 2012, 51, 16251−16262.
a) P. B. Webb, M. F. Sellin, T. E. Kunene, S. Williamson, A. M. Z. Slawin,
D. J. Cole-Hamilton, J. Am. Chem. Soc. 2003, 125, 15577−15588; b) M.
Peters, M. F. Eckstein, G. Hartjen, A. C. Spiess, W. Leitner, L. Greiner,
Ind. Eng. Chem. Res. 2007, 46, 7073−7078; c) X. K. Yang, T. Li, K. Tang,
X. P. Zhou, M. Lu, W. L. Ounkham, S. M. Spain, B. J. Frost, H. F. Lin,
Green Chem. 2017, 19, 3566−3573; d) B. Ahmed, D. Barrow, T. Wirth,
Adv. Synth. Catal. 2006, 348, 1043−1048.
[6]
[7]
[8]
[9]
a) S. Crossley, J. Faria, M. Shen, D. E. Resasco, Science 2010, 327,
68−72; b) P. A. Zapata, J. Faria, M. P. Ruiz, R. E. Jentoft, D. E. Resasco,
J. Am. Chem. Soc. 2012, 134, 8570−8578; c) H. Y. Tan, P. Zhang, L.
Wang, D. Yang, K. B. Zhou, Chem. Commun. 2011, 47, 11903−11905;
d) Z. P. Wang, M. C. van Oers, F. P. J. T. Rutjes, J. C. van Hest, Angew.
Chem. 2012, 124, 10904−10908; Angew. Chem., Int. Ed. 2012, 51,
10746−10750; e) J. Potier, S. Menuel, M.H. Chambrier, L. Burylo, J. F.
Blach, P. Woisel, E. Monflier, F. Hapiot, ACS Catal. 2013, 3, 1618−1621;
f) Y. P. Zhao, X. M. Zhang, J. Sanjeevi, Q. H. Yang, J. Catal. 2016, 334,
52−59; g) W. J. Zhou, L. Fang, Z. Y. Fan, B. Albela, L. Bonneviot, F. De
Campo, M. Pera-Titus, J. M. Clacens, J. Am. Chem. Soc. 2014, 136,
4869−4872; h) L. Leclercq, R. Company, A. Mühlbauer, A. Mouret, J. M.
Aubry, V. Nardello-Rataj, ChemSusChem 2013, 6, 1533−1540; i) Z. W.
Chen, L. Zhou, W. Bing, Z. J. Zhang, Z. H. Li, J. S. Ren, X. G. Qu, J. Am.
Chem. Soc. 2014, 136, 7498−7504; j) H. Q. Yang, L. M. Fu, L. J. Wei, J.
F. Liang, B. P. Binks, J. Am. Chem. Soc. 2015, 137, 1362−1371; k) Y. Y.
Shan, C. Yu, J. Yang, Q. Dong, X. M. Fan, J. S. Qiu, ACS Appl. Mater.
Interfaces 2015, 7, 12203−12209.
Experimental Section
Preparation of methyl-functionalized TiO2
P25 TiO2 (1.0 g; dried at 110 oC for 4 h) was ultrasonically dispersed into
toluene (15 mL). A mixture of 0.4 mmol (MeO)3SiCH3 and 0.4 mmol
(C2H5)3N were simultaneously added into the toluene system. After
refluxing at 110 oC for 4 h under N2 atmosphere, the obtained material was
isolated through centrifugation, washed five times with toluene and dried.
The resultant methyl-functionalized TiO2 nanoparticles are denoted as
TiO2-C(0.4). For TiO2-C(4), 4 mmol (MeO)3SiCH3 and 4 mmol (C2H5)3N
were used. Other procedures are the same as TiO2-C(0.4).
[10] a) B. P. Binks, Curr. Opin. Colloid Interface Sci. 2002, 7, 21−41; b) R.
Aveyard, B. P. Binks, J. H. Clint, Adv. Colloid Interface Sci. 2003,
100−102, 503−546; c) B. P. Binks, Phys. Chem. Chem. Phys. 2007, 9,
6298−6299; d) K. Du, E. Glogowski, T. Emrick, T. P. Russell, A. D.
Dinsmore, Langmuir 2010, 26, 12518−12522; e) F. X. Liang, K. Shen, X.
Z. Qu, C. L. Zhang, Q. Wang, J. L. Li, J. G. Liu, Z. Z. Yang, Angew. Chem.
2011, 123, 2427−2430; Angew. Chem., Int. Ed. 2011, 50, 2379−2382; f)
J. E. Newton, J. A. Preece, N. V. Rees, S. L. Horswell, Phys. Chem.
Chem. Phys. 2014, 16, 11435−11446; g) T. T. Liu, S. Seiffert, J. Thiele,
A. R. Abate, D. A. Weitz, W. Richtering, Proc. Natl. Acad. Sci. U.S.A.
2012, 109, 384−389; h) F. Q. Tu, D. Lee, J. Am. Chem. Soc. 2014, 136,
9999−10006; i) M. Liu, X. L. Chen, Z. P. Yang, Z. Xu, L. Z. Hong, T. Ngai,
ACS Appl. Mater. Interfaces 2016, 8, 32250−32258; j) S. Li, J. A.
Willoughby, O. J. Rojas, ChemSusChem 2016, 9, 2460−2469; k) M.
Pera-Titus, L. Leclercq, J. M. Clacens, F. De Campo, V. Nardello-Rataj,
Angew. Chem. 2015, 127, 2028−2044; Angew. Chem., Int. Ed. 2015, 54,
2006−2021; l) J. S. Xu, M. Antonietti, J. Am. Chem. Soc. 2017, 139,
6026−6029; m) C. Y. Jian, Q. X. Liu, H. B. Zeng, T. Tang, J. Phys. Chem.
C 2017, 121, 10382−10391; n) R. X. Bai, L. H. Xue, R. K. Dou, S. X.
Meng, C. Y. Xie, Q. Zhang, T. Guo, T. Meng, Langmuir 2016, 32,
9254−9264.
Preparation of Pickering emulsions for catalysis reactions
Typically, 30 mL deionized water and 15 mL benzene were added into a
flask containing a certain amount of catalyst, emulsifier and ZnSO4·7H2O.
After vigorously stirring with a homogenizer for 2 minutes, a Pickering
emulsion (O/W or W/O) was obtained. Selective hydrogenation of benzene
was carried out in a 100 mL autoclave. The autoclave was charged with
prepared Pickering emulsion and sealed and then purged with H2 three
times to expel air and then the H2 pressure was raised up to 5.0 MPa. The
reaction was conducted at 140 oC under stirring (700 rpm). The conversion,
selectivity and yield were determined with Agilent 7890A gas
chromatograph equipped with ATSE-30 capillary column and flame
ionization detector (FID).
Acknowledgements
This work is supported by the Natural Science Foundation of
China (U1510105, 21733009 and 201573136), the Foundation for
6
This article is protected by copyright. All rights reserved.