3 S. Schulz, C. Messer and K. Dettner, Tetrahedron Lett., 1997, 38,
2077.
4 (a) G. Mehta and K. Sreenivas, Synlett, 1999, 555; (b) G. Mehta and K.
Sreenivas, Tetrahedron Lett., 1999, 40, 4877; (c) G. Mehta and K.
Sreenivas, Tetrahedron Lett., 2001, 42, 2855.
5 Formation of the tricyclo[6.2.0.02,6]decane system has been recorded
before, see: Y. Ohfune, H. Shirahama and T. Matsumoto, Tetrahedron
Lett., 1975, 4377; G. Mehta and A. Srikrishna, Tetrahedron Lett., 1979,
3187; A. J. H. Klunder, G. J. A. Ariaans, E. A. R. M. Van de Loop and
B. Zwanenburg, Tetrahedron, 1986, 42, 1903. However, only one
synthesis of
recorded.4b,c
a natural product based on this system has been
6 For a recent review on the synthesis of polyquinane natural products,
see: G. Mehta and A. Srikrishna, Chem. Rev., 1997, 97, 671.
7 For an earlier synthesis of diquinane 7, see: J. Cossy, D. Belotti and J.-P.
Pete, Tetrahedron Lett., 1987, 28, 4547.
8 P. M. Henry, M. Davies, G. Ferguson, S. Philips and R. Restivo, Chem.
Commun., 1974, 112; G. Mehta and K. V. Rao, Indian J. Chem., Sect.
B: Org. Chem. Incl. Med. Chem., 1991, 30B, 457.
9 All new compounds reported here were duly characterized on the basis
of spectral (IR, 1H and 13C NMR) and analytical data. J values are
measured in Hz. Selected spectral data: 15a: IR (neat) nmax 3313, 3047,
1652 cm21; 1H NMR (300 MHz, CDCl3): d 6.26 (d, J 2.7, 1H), 6.19 (d,
J 3.0, 1H) 3.84 (d, J 8.4, 1H), 3.81 (br s, 2H), 2.48–2.23 (m, 2H), 1.93
(m, 2H), 1.76 (dd, J1 13.5, J2 8.1, 1H), 1.60 (d, J 13.5, 1H), 1.40–1.30
(m, 1H), 1.13 (s, 3H), 1.06 (s, 3H), 0.97 (s, 3H); 13C NMR (75.0 MHz,
CDCl3): d 146.1, 133.7, 82.8, 66.2, 62.9, 55.8, 49.3, 46.9, 44.0, 43.9,
40.8, 31.5, 30.6, 16.1; EIMS (20 eV) m/z 204 (M+ 2 18); 15b: IR (neat)
nmax 3365, 3032, cm21; 1H NMR (300 MHz, CDCl3): d 6.10 (d, J 3.0,
Scheme 3 Reagents: (a) (E)-1,2-dichloroethylene, C6H12, hn, pyrex, 94%;
(b) i. DIBAL-H, DCM, ii. sodium naphthalenide, DME, (15a+15b
=
t
55+45), 63% (2 steps); (c) H2, 10% Pd/C, EtOAc, 92%; (d) i. BDMS-Cl,
imidazole, DMAP, DCM, 91%; ii. Ac2O, DMAP, DCM, 100%; iii. 2N
H2SO4, MeOH–H2O, 87%; (e) i. PCC, DCM, 90%, ii. MePPh3I, KOtBu,
THF, 92%; (f) i. OsO4, N-methylmorpholine oxide Me2CO–H2O, 85%; ii.
Ac2O, DMAP, 100%; iii. PCC, DCM, 75%; (g) Sc(OTf)3, MeOH–H2O,
80%; (h) KOH–MeOH, 70%.
1
1
1H), 5.92 (d, J 3.0, 1H), 3.97 (3 ABq, J 11.7, 1H), 3.92 (2 ABq, J 11.7,
1H), 3.97 (d, J 6.3, 1H), 2.85–2.75 (m, 1H), 2.47–2.38 (m, 1H),
1.67–1.22 (series of m, 4H), 1.18 (s, 3H), 1.09 (s, 3H), 1.00 (s, 3H); 13
C
further deprotection of the TBDMS group delivered the
hydroxy–acetate 17.9 Oxidation of the primary hydroxy group
in 17 with PCC to the aldehyde functionality and Wittig
methylenation delivered 18, Scheme 3. Although 18 could be
readily elaborated to the targeted advanced precursor 59
(Scheme 1) of sulcatine G, 2, tactical considerations at this stage
required further processing through 18. Consequently, 18 was
dihydroxylated and the primary hydroxy group in the resulting
diol was selectively protected as the acetate. Further oxidation
of the secondary hydroxy group delivered sulcatine G diacetate
19, spectroscopically identical with the diacetate reported from
the natural product 2.1,9 Transformation of 19 to the natural
product presented some problems but could be accomplished in
two steps involving Sc(OTf)3 mediated hydrolysis of the a-
ketoacetoxy group11 to monoacetate 20 and further exposure to
base furnished sulcatine G, 2, Scheme 3.9 Our synthetic 2 was
found to be exactly identical with the natural product spec-
troscopically (IR, 1H and 13C NMR).1
NMR (75.0 MHz, CDCl3): d 145.9, 135.8, 77.3, 65.1, 64.9, 57.3, 50.7,
48.2, 43.8, 40.7, 38.4, 30.9, 29.5, 16.4; EIMS (20 eV) m/z 204 (M+
18); 16a: IR (neat) nmax 3326 cm21 1H NMR (300 MHz, CDCl3): d
2
;
1
1
3.94 (d, J 9.3, 1H), 3.81 (2 ABq, J 10.2, 1H), 3.73 (2 ABq, J 10.8, 1H),
2.61–2.52 (m, 1H), 2.23–2.00 (series of m, 2H), 1.90–1.52 (series of m,
6H), 1.35 (dd, J1 12.6, J2 7.2, 1H), 1.12 (s, 3H), 1.00 (s, 3H), 0.97 (s,
3H); 13C NMR (75.0 MHz, CDCl3): d 85.4, 68.5, 54.7, 52.6, 49.4, 45.4,
45.0, 44.0, 40.5, 31.8, 31.6, 30.6, 19.2, 17.0; EIMS (20 eV) m/z 206 (M+
2 18); 16b: IR (neat) nmax 3366 cm21; 1H NMR (300 MHz, CDCl3): d
1
1
3.93 (2 ABq, J 11.4, 1H), 3.85 (2 ABq, J 11.4, 1H), 3.82 (d, J 5.7, 1H),
2.99–2.90 (m, 1H), 2.42–2.32 (m, 1H), 1.81–1.17 (series of m, 8H), 1.12
(s, 3H), 1.07 (s, 3H), 1.01 (s, 3H); 13C NMR (75.0 MHz, CDCl3): d 83.1,
66.1, 58.0, 55.0, 48.1, 46.1, 44.1, 40.2, 38.7, 31.1, 30.4, 29.1, 23.1, 20.1;
EIMS (20 eV) m/z 206 (M+ 2 18); 18: IR (neat) nmax 3082, 1738, 1635
cm21; 1H NMR (300 MHz, CDCl3): d 5.88 (ABX, J1 17.2, J2 10.8, 1H),
5.16 (d, J 9.3, 1H), 5.10 (ABX, J1 10.8, J2 1.5, 1H), 4.98 (ABX, J1 17.1,
J2 1.2, 1H), 2.86–2.76 (m, 1H), 2.33–2.23 (m, 1H), 2.10–1.66 (series of
m, 6H), 2.01 (s, 3H), 1.39 (dd, J1 12.3, J2 7, 1H), 1.20–1.10 (m, 1H),
1.14 (s, 3H), 0.96 (s, 3H), 0.93 (s, 3H); 13C NMR (75.0 MHz, CDCl3):
d 170.9, 141.9, 113.5, 86.2, 55.3, 54.5, 49.0, 48.5, 44.8, 43.8, 40.5, 31.7,
31.5, 30.6, 21.2, 20.4, 17.1; EIMS (20 eV) m/z 262 (M+); 19: IR (neat)
nmax 1736, 1715; 1H NMR (300 MHz, acetone-d6): d 5.23 (d, J 16.8,
1H), 4.97 (d, J 8.7, 1H), 4.66 (d, J 16.8, 1H), 3.03–2.94 (m, 1H),
2.50–2.39 (m, 1H), 2.34–2.25 (m, 1H), 2.08 (s, 3H), 2.02 (s, 3H),
2.01–1.78 (series of m, 4H), 1.65 (dd, J1 13.8, J2 2.4, 1H), 1.53 (t, J 12.6,
1H), 1.40–1.31 (m, 1H), 1.15 (s, 3H), 1.03 (s, 3H), 0.99 (s, 3H); 13C
NMR (75.0 MHz, acetone-d6): d 203.8, 171.5, 170.3, 88.2, 68.3, 63.0,
55.4, 53.9, 50.3, 45.5, 44.0, 41.0, 31.8, 31.3, 30.8, 21.0, 20.6, 20.4,
14.5.
In summary, we have outlined a stereocontrolled synthesis of
the sesquiterpene sulcatine G, 2, from a readily available
starting material (1,5-cod), which also unambiguously secures
the stereostructure of the natural product.
We thank JNCASR for the financial support. One of us
(K. S.) thanks UGC for the award of a research fellowship.
Notes and references
† The IUPAC name for diquinane is bicyclo[3.3.0]octane.
10 The major isomer in 13 is expected to have b-methyl and a-
carbomethoxy groups in trans disposition through sequential addition
and protonation from the convex face. However, the stereochemistry of
13 is inconsequential in the context of the further steps in the
synthesis.
1 A. Arnone, G. Nasini and O. Vajna de Pava, J. Chem. Soc., Perkin
Trans. 1, 1993, 2723.
2 (a) G. Konig and A. D. Wright, J. Org. Chem., 1997, 62, 3837; (b) K.
Nabeta, K. Yamamoto, M. Hashimoto, H. Koshino, K. Funatsuki and K.
Katoh, J. Chem. Soc., Chem. Commun., 1998, 1485.
11 H. Kajiro, S. Mitamura, A. Mori and T. Hiyama, Tetrahedron Lett.,
1999, 40, 1689.
Chem. Commun., 2001, 1892–1893
1893