Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C7CC08686E
COMMUNICATION
Journal Name
11. Y. Kuang, K. Miki, C. J. C. Parr, K. Hayashi, I. Takei, J. Li, M. Iwasaki,
M. Nakagawa, Y. Yoshida and H. Saito, Cell Chem. Biol., 2017, 24, 685-
694 e684.
12. U. Ben-David, Q. F. Gan, T. Golan-Lev, P. Arora, O. Yanuka, Y. S. Oren,
A. Leikin-Frenkel, M. Graf, R. Garippa, M. Boehringer, G. Gromo and N.
Benvenisty, Cell Stem Cell, 2013, 12, 167-179.
13. M. O. Lee, S. H. Moon, H. C. Jeong, J. Y. Yi, T. H. Lee, S. H. Shim, Y.
H. Rhee, S. H. Lee, S. J. Oh, M. Y. Lee, M. J. Han, Y. S. Cho, H. M.
Chung, K. S. Kim and H. J. Cha, Proc. Natl. Acad. Sci. U. S. A., 2013, 110,
E3281-3290.
14. S. P. Wyles, S. Yamada, S. Oommen, J. J. Maleszewski, R. Beraldi, A.
Martinez-Fernandez, A. Terzic and T. J. Nelson, Stem Cells and Dev.,
2014, 23, 2274-2282.
decontaminates hiPSC-derived neurons by selectively eliminating
proliferating stem cells. However, the potential risk of the leftover Ki-
67-positive cells can not be ignored although those cells express
relatively low levels of Ki-67.
For clinical application, it is also important to ensure that the
decontaminated neurons are alive and functional after SN38-P
treatment. The hiPSC-derived neurons displayed healthy morphology
after 3 d treatment with SN38-P (Fig. 4B). Their functional activity
was assessed by measuring glutamate-induced calcium influx.35
Comparable levels of Ca2+ influx were observed after addition of
glutamate (100 µM) in DMSO-treated and SN38-P-treated hiPSC-
derived neurons (Fig. S12). Thus, 3 d treatment with 0.01 µM of
SN38-P is within an acceptable range for maintaining the function of
hiPSC-derived neurons.
15. U. Ben-David, I. G. Cowell, C. A. Austin and N. Benvenisty, Stem Cells,
2015, 33, 1013-1019.
16. T. F. Kuo, D. Mao, N. Hirata, B. Khambu, Y. Kimura, E. Kawase, H.
Shimogawa, M. Ojika, N. Nakatsuji, K. Ueda and M. Uesugi, J. Am. Chem.
Soc., 2014, 136, 9798-9801.
In conclusion, simple phosphorylation of the clinically-used
anticancer drug, SN38, provides a cost-effective, chemically-defined
tool for decontaminating hiPSC-derived neurons. Neural precursor
cells have been reported to express higher levels of ALP than
terminally differentiated neural cells. SN38-P may also be useful for
purification of other types of the terminally differentiated neural and
glail cells such as mature oligodendrocytes.36 Clinical application of
SN38-P requires further safety evaluations due to potential
mutagenesis risks of topoisomerase inhibitors. Nevertheless, similar
phosphorylation strategies might be applied to other chemical iPSC
eliminators to improve their selectivity and safety profiles, with the
ultimate goal of clinical application.
17. S. J. Cho, S. Y. Kim, S. J. Park, N. Song, H. Y. Kwon, N. Y. Kang, S. H.
Moon, Y. T. Chang and H. J. Cha, ACS Cent. Sci., 2016, 2, 604-607.
18. D. Mao, S. Ando, S. I. Sato, Y. Qin, N. Hirata, Y. Katsuda, E. Kawase, T.
F. Kuo, I. Minami, Y. Shiba, K. Ueda, N. Nakatsuji and M. Uesugi, Angew.
Chem. Int. Ed., 2017, 56, 1765-1770.
19. N. Hirata, M. Nakagawa, Y. Fujibayashi, K. Yamauchi, A. Murata, I.
Minami, M. Tomioka, T. Kondo, T. F. Kuo, H. Endo, H. Inoue, S. Sato,
S. Ando, Y. Kawazoe, K. Aiba, K. Nagata, E. Kawase, Y. T. Chang, H.
Suemori, K. Eto, H. Nakauchi, S. Yamanaka, N. Nakatsuji, K. Ueda and
M. Uesugi, Cell Rep., 2014, 6, 1165-1174.
20. V. Marx, Nat. Methods, 2016, 13, 617-622.
21. T. Kikuchi, A. Morizane, D. Doi, K. Okita, M. Nakagawa, H. Yamakado,
H. Inoue, R. Takahashi and J. Takahashi, J. Neurosci. Res., 2017, 95,
1829-1837.
This research is supported by the project, "Development of Cell 22. T. Matsumoto, K. Fujimori, T. Andoh-Noda, T. Ando, N. Kuzumaki, M.
Toyoshima, H. Tada, K. Imaizumi, M. Ishikawa, R. Yamaguchi, M. Isoda,
Production and Processing Systems for Commercialization of
Z. Zhou, S. Sato, T. Kobayashi, M. Ohtaka, K. Nishimura, H. Kurosawa,
Regenerative Medicine," from the Japan Agency for Medical
T. Yoshikawa, T. Takahashi, M. Nakanishi, M. Ohyama, N. Hattori, W.
Research and Development, AMED. This work is also supported in
Akamatsu and H. Okano, Stem Cell Rep., 2016, 6, 422-435.
part by JSPS (26220206 to M.U.). This work was inspired by JSPS
CORE-to-CORE “Asian Chemical Biology Initiative.”
23. T. Kikuchi, A. Morizane, D. Doi, H. Magotani, H. Onoe, T. Hayashi, H.
Mizuma, S. Takara, R. Takahashi, H. Inoue, S. Morita, M. Yamamoto, K.
Okita, M. Nakagawa, M. Parmar and J. Takahashi, Nature, 2017, 548,
592-596.
24. N. S. Roy, C. Cleren, S. K. Singh, L. Yang, M. F. Beal and S. A. Goldman,
Nat. Med., 2006, 12, 1259-1268.
Conflicts of interest
There are no conflicts to declare.
25. B. Samata, D. Doi, K. Nishimura, T. Kikuchi, A. Watanabe, Y. Sakamoto,
J. Kakuta, Y. Ono and J. Takahashi, Nat. Comm., 2016, 7, 13097.
26. D. R. Lee, J. E. Yoo, J. S. Lee, S. Park, J. Lee, C. Y. Park, E. Ji, H. S. Kim,
D. Y. Hwang, D. S. Kim and D. W. Kim, Stem Cell Rep., 2015, 4, 821-
834.
27. D. Doi, B. Samata, M. Katsukawa, T. Kikuchi, A. Morizane, Y. Ono, K.
Sekiguchi, M. Nakagawa, M. Parmar and J. Takahashi, Stem Cell Rep.,
2014, 2, 337-350.
28. D. Doi, A. Morizane, T. Kikuchi, H. Onoe, T. Hayashi, T. Kawasaki, M.
Motono, Y. Sasai, H. Saiki, M. Gomi, T. Yoshikawa, H. Hayashi, M.
Shinoyama, M. M. Refaat, H. Suemori, S. Miyamoto and J. Takahashi,
Stem Cells, 2012, 30, 935-945.
29. Y. Qi, X. J. Zhang, N. Renier, Z. Wu, T. Atkin, Z. Sun, M. Z. Ozair, J.
Tchieu, B. Zimmer, F. Fattahi, Y. Ganat, R. Azevedo, N. Zeltner, A. H.
Brivanlou, M. Karayiorgou, J. Gogos, M. Tomishima, M. Tessier-Lavigne,
S. H. Shi and L. Studer, Nat. Biotechnol., 2017, 35, 154-163.
30. V. Tieng, O. Cherpin, E. Gutzwiller, A. C. Zambon, C. Delgado, P.
Salmon, M. Dubois-Dauphin and K. H. Krause, Mol. Ther. Methods Clin.
Dev., 2016, 6, 16069.
Notes and references
1. K. Miura, Y. Okada, T. Aoi, A. Okada, K. Takahashi, K. Okita, M.
Nakagawa, M. Koyanagi, K. Tanabe, M. Ohnuki, D. Ogawa, E. Ikeda, H.
Okano and S. Yamanaka, Nat. Biotechnol., 2009, 27, 743-745.
2. U. Ben-David and N. Benvenisty, Nat. Rev. Cancer, 2011, 11, 268-277.
3. C. Tang, A. S. Lee, J. P. Volkmer, D. Sahoo, D. Nag, A. R. Mosley, M. A.
Inlay, R. Ardehali, S. L. Chavez, R. R. Pera, B. Behr, J. C. Wu, I. L.
Weissman and M. Drukker, Nat. Botechnol., 2011, 29, 829-834.
4. K. Schriebl, G. Satianegara, A. Hwang, H. L. Tan, W. J. Fong, H. H. Yang,
A. Jungbauer and A. Choo, Tissue Eng. Part A, 2012, 18, 899-909.
5. A. B. Choo, H. L. Tan, S. N. Ang, W. J. Fong, A. Chin, J. Lo, L. Zheng,
H. Hentze, R. J. Philp, S. K. Oh and M. Yap, Stem Cells, 2008, 26, 1454-
1463.
6. S. Tohyama, F. Hattori, M. Sano, T. Hishiki, Y. Nagahata, T. Matsuura,
H. Hashimoto, T. Suzuki, H. Yamashita, Y. Satoh, T. Egashira, T. Seki,
N. Muraoka, H. Yamakawa, Y. Ohgino, T. Tanaka, M. Yoichi, S. Yuasa,
M. Murata, M. Suematsu and K. Fukuda, Cell Stem Cell, 2013, 12, 127-
137.
31. U. Singh, R. H. Quintanilla, S. Grecian, K. R. Gee, M. S. Rao and U.
Lakshmipathy, Stem Cell Rev. Rep., 2012, 8, 1021-1029.
32. V. Valdiglesias, S. Giunta, M. Fenech, M. Neri and S. Bonassi, Mut. Res.,
2013, 753, 24-40.
33. O. Momcilovic, L. Knobloch, J. Fornsaglio, S. Varum, C. Easley and G.
Schatten, PloS one, 2010, 5, e13410.
7. K. Matsuura, F. Kodama, K. Sugiyama, T. Shimizu, N. Hagiwara and T.
Okano, Tissue Eng. Part C, Methods, 2015, 21, 330-338.
8. H. Tateno, Y. Onuma, Y. Ito, F. Minoshima, S. Saito, M. Shimizu, Y. Aiki,
M. Asashima and J. Hirabayashi, Stem Cell Rep., 2015, 4, 811-820.
9. K. Matsuura, H. Seta, Y. Haraguchi, K. Alsayegh, H. Sekine, T. Shimizu,
N. Hagiwara, K. Yamazaki and T. Okano, Sci. Rep., 2016, 6, 21747.
10. C. J. Parr, S. Katayama, K. Miki, Y. Kuang, Y. Yoshida, A. Morizane, J.
Takahashi, S. Yamanaka and H. Saito, Sci. Rep., 2016, 6, 32532.
34. M. Zhang, C. Yang, H. Liu and Y. Sun, Genomics, Proteomics
Bioinformatics, 2013, 11, 320-326.
35. R. D. Randall and S. A. Thayer, J. Neurosci., 1992, 12, 1882-1895.
36. C. Fonta, L. Negyessy, L. Renaud and P. Barone, J. Comp. Neurol., 2005,
486, 179-196.
4 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins