homocoupling reaction of allylic halides using Rieke barium10
is particularly interesting. This method has been reported to
give good results in the coupling of (E,E)-farnesyl barium
with farnesyl bromide,11 although its aplication has been
limited.
We started the development of this synthetic method by
choosing the simplest terpenic allyl halides: geranyl bromide
(4a) and its geometrical isomer neryl bromide (4b). When
these compounds were exposed to an excess of Cp2TiCl,12
the R,R′ coupling products (5a and 5b) were mainly obtained
after only 2 min, together with the R,γ′ adduct (Table 1,
entries 1 and 3).
in situ) to the corresponding halogenated derivative to give
an allylic radical species (I). This would then either dimerize
to give the coupling products 5 or suffer a second SET
process to give an η1-allyltitanium species (II), which would
react with a molecule of unaltered halogenated derivative
also to produce the coupling products 5 (Scheme 2).
Scheme 2
Table 1. Coupling of Allylic Bromidesa Using Cp2TiCl2/Mn
Evidence to help distinguish between the mechanistic paths
proposed may be inferred from a further analysis of the
results. Thus, although the geometry of the radical Ia might
not be suitable to lead to a 6-exo cyclization with the 6,7
double bond, its geometrical isomer Ib should give rise to
the formation of the corresponding p-menthanes. Since no
derivative p-menthanes were ever detected, the mechanism
via allyltitanium (II) would seem in principle more likely.13
Continuing with the mechanistic aspects of this reaction, we
prepared compounds 4c and 4d, in which the R,â-unsaturated
methyl ester group (better nucleophilic radical acceptor)
ought to favor the radical cyclization process.14 When these
R,â-unsaturated ester derivatives were made to react with
allylic
equiv of
time
ratioc
yielde
(%)
b
entry bromide Cp2TiCl2 (min) R,R′:R,γ′d compd
1
2
4a
4a
4b
4b
4c
4c
4d
4d
4c
4d
3
0.2
3
0.2
3
0.2
3
0.2
3
0.05
2
15
2
15
2
10
2
10
10
20
70:30
64:36
74:26
73:27
77:23
74:26
85:15
81:19
85:15
78:22
5a
5a
5b
5b
5c
5c
5d
5d
5c
5d
80
89
70
90
84
85
60
64
67
55
3
4
5
6
7
8
9f
10g
a Prepared by the reaction of corresponding alcohols with Ph3P/CBr4 in
benzene except for the commercially available geranyl bromide. b Performed
with 8 equiv of Mn, 0.07 M solutions, THF, rt. c Determined by GC analysis.
d A certain degree of E/Z isomerization is observed. In most cases, the
different isomers obtained in each coupling process could be isolated either
by column chromatography on AgNO3 (20%)-Si gel or by HPLC. For
details, see Experimental Section. e Isolated yield after column chromatog-
raphy. f Performed with 28 equiv of H2O. g Performed with 2.5 equiv of
2,4,6-collidine hydrochloride.
(8) (a) Rasmus, J. E.; Larsen, J.; Skrydstrup, T.; Daasbjerg, K. J. Am.
Chem. Soc. 2004, 126, 7853-7864. (b) Yanlong, Q.; Guisheng, L.; Huang,
Y. J. Organomet. Chem. 1990, 381, 29-34.
(9) (a) Corey, E. J.; Hamanaka, E. J. Am. Chem. Soc. 1964, 86, 1641-
1642. (b) Corey, E. J.; Semmelhack, M. F. Tetrahedron Lett. 1966, 7, 6237-
6240. (c) Corey, E. J.; Semmelhack, M. F. J. Am. Chem. Soc. 1967, 89,
2755-2757. (d) Baker, R. Chem. ReV. 1973, 73, 487-530. (e) Yamamoto,
Y.; Maruyama, K. J. Am. Chem. Soc. 1978, 100, 6282-6284. (f) Clive, D.
L. J.; Anderson, P. C.; Moss, N.; Singh, A. J. Org. Chem. 1982, 47, 1641-
1647. (g) Momose, D.; Iguchi, K.; Sugiyama, T.; Yamada, Y. Tetrahedron
Lett. 1983, 24, 921-924. (h) Calo, V.; Lo´pez, L.; Pesce, G. J. Chem. Soc.,
Perkin Trans. 1 1988, 1301-1304. (i) Rieke, R. D.; Kavaliunas, A. V.;
Rhyne, L. D. J. Am. Chem. Soc. 1979, 101, 246-248. (j) Merijanian, A.;
Mayer, T. J. Org. Chem. 1972, 37, 3945-3947. (k) Benkeser, R. A.
Synthesis 1971, 7, 347-358. (l) Courtois, G.; Miginiac, L. J. Organomet.
Chem. 1974, 69, 1-44. (m) Kitagawa, Y.; Oshima, K.; Yamamoto, H.;
Nozaki, H. Tetrahedron Lett. 1975, 1859-1862. (n) Okude, Y.; Hiyama,
T.; Nozaki, H. Tetrahedron Lett. 1977, 43, 3829-3830. (o) Nakanishi, S.;
Oda, T.; Ueda, T.; Otsuji, Y. Chem. Lett. 1978, 1309-1312. (p) Tokuda,
M.; Satoh, K.; Suginome, H. Chem. Lett. 1984, 6, 1035-1038. (q) Ginah,
F. O.; Donovan, T. A.; Suchan, S. D.; Pfenning, D. R.; Ebert, G. W. J.
Org. Chem. 1990, 55, 584-589. (r) Nishino, T.; Watanabe, T.; Okada, M.;
Nishiyama, Y.; Sonoda, N. J. Org. Chem. 2002, 67, 966-969.
(10) (a) Wu, T.-C.; Hiong, H.; Rieke, R. D. J. Org. Chem. 1990, 55,
5045-5051. (b) Yanagisawa, A.; Habaue, S.; Yamamoto, H. J. Am. Chem.
Soc. 1991, 113, 5893-5895. (c) Corey, E. J.; Noe, M. C.; Shieh, W.-CH.
Tetrahedron Lett. 1993, 34, 5995-5998.
To account for this result, the following mechanistic
proposals might be postulated: the process would start by a
fast single-electron transfer (SET) from Cp2TiCl (generated
(3) Spencer, R. P.; Schwartz, J. Tetrahedron 2000, 56, 2103-2112.
(4) (a) Nugent, W. A.; RajanBabu, T. V. J. Am. Chem. Soc. 1988, 110,
8561-8562. (b) Nugent, W. A.; RajanBabu, T. V. J. Am. Chem. Soc. 1994,
116, 986-997. (c) Gansa¨uer, A.; Bluhm, H.; Pierobon, M. J. Am. Chem.
Soc. 1998, 120, 12849-12859. (d) Gansa¨uer, A.; Pierobon, M.; Bluhm, H.
Synthesis 2001, 16, 2500-2520.
(5) (a) Gansa¨uer, A.; Moschioni, M.; Bauer, D. Eur. J. Org. Chem. 1998,
1923-1927. (b) Gansa¨uer, A.; Bauer, D. Eur. J. Org. Chem. 1998, 2673-
2676.
(6) (a) Cavallaro, C. L.; Schwartz, J. J. Org. Chem. 1995, 60, 7055-
7057. (b) Spencer, R. P.; Schwartz, J. Tetrahedron Lett. 1996, 37, 4357-
4360. (c) Spencer, R. P.; Schwartz, J. J. Org. Chem. 1997, 62, 4204-
4205. (d) Spencer, R. P.; Cavallaro, C. L.; Schwartz, J. J. Org. Chem. 1999,
64, 3987-3995. (e) Hansen, T.; Krintel, S. L.; Daasbjerg, K.; Skrydstrup,
T. Tetrahedron Lett. 1999, 40, 6087-6090. (f) Hansen, T.; Daasbjerg, K.;
Skrydstrup, T. Tetrahedron Lett. 2000, 41, 8645-8649.
(11) This process represented the first direct synthesis of squalene by
the coupling of two (E,E)-farnesyl units.
(12) Procedure used in the opening of oxiranes; see ref 1b.
(13) Existence of η1-allyltitanium species in equilibrium has been
postulated previously: Kasatkin, A.; Nakagawa, T.; Okamoto, S.; Sato, F.
J. Am. Chem. Soc. 1995, 117, 3881-3882.
(7) Davies, S.; Thomas, S. E. Synthesis 1984, 1027-1029.
(14) Zhang, W. Tetrahedron 2001, 57, 7237-7262.
2302
Org. Lett., Vol. 7, No. 12, 2005