8470
P. Al6arez et al. / Tetrahedron Letters 42 (2001) 8467–8470
Reference electrode:aqueous saturated calomel electrode
Acknowledgements
(SCE) separated from the solution by a porous septum.
Working electrode: platinum disk. Electrolite: NBu4PF6.
12. Bruce, M. I. Chem. Rev. 1998, 98, 2797.
Support from NATO (Collaborative Research Grant
950794) and COST CHEMISTRY Action D12, Project
D12/0025/99 ‘Ruthenium Catalysts for Fine Chemistry’
is gratefully acknowledged.
13. Solutions of surfactant (0.1 M, 0.5 M) were prepared by
dissolving CTAB or SDS in deionized water. The alkyne
([surfactant]/[alkyne]=2.5 or 5) was added to 5 cm3 of
the solution (25 cm3 under preparative conditions), in a
vessel sealed by a Teflon stopper, and the mixture stirred
in a ultrasound bath (30 min). The ruthenium complex
was added (5 mol% with respect to the alkyne), the
mixture stirred (30 min) and then heated (60°C). The
reaction was monitored by gas chromatography, until
consumption of the substrate. Petroleum ether (5 cm3)
was then added to the aqueous solution, the organic
phase was extracted, dried over anhydrous magnesium
sulfate, and analyzed (GC–MS). Under preparative con-
ditions, the organic solvent, after filtration, was removed
under vacuum, and the oily residue was purified by
chromatography (hexane/silica), or vacuum distilled, to
give the product. The organic products described in this
work are known. Characterization was obtained by 1H
NMR and by GC–MS.
References
1. (a) March, J. Advanced Organic Chemistry, 4th ed.;
Wiley: New York, 1992; p. 762; (b) Damiano, J. P.;
Postel, M. J. Organomet. Chem. 1996, 522, 303.
2. Tokunaga, M.; Wakatsuki, Y. Angew. Chem., Int. Ed.
1998, 37, 2867.
3. Suzuki, T.; Tokunaga, M.; Wakatsuki, Y. Org. Lett.
2001, 3, 735.
4. (a) Manabe, K.; Mori, Y.; Wakabayashi, T.; Nagayama,
S.; Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 7202; (b)
Li, H. R.; Wu, L. Z.; Tung, C. H. J. Am. Chem. Soc.
2000, 122, 2446; (c) Mori, Y.; Kakumoto, K.; Manabe,
K.; Kobayashi, S. Tetrahedron Lett. 2000, 41, 3107.
5. (a) Jaeger, D. A.; Su, D.; Zafar, A.; Piknova, B.; Hall, S.
B. J. Am. Chem. Soc. 2000, 122, 2749; (b) Schutz, A.;
Wolff, T. J. Photochem. Photobiol. A–Chemistry 1997,
109, 251; (c) Bassetti, M.; Cerichelli, G.; Floris, B. Gazz.
Chim. Ital. 1986, 116, 583.
6. Fendler, J. H.; Fendler, E. J. Catalysis in Micellar and
Macromolecular Systems; Academic Press: London, 1975.
7. (a) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Gonza´les-
Cueva, M.; Lastra, E.; Borge, J.; Garc´ıa-Granda, S.;
Pe´rez-Carren˜o, E. Organometallics 1996, 15, 2137; (b)
Cadierno, V.; Gamasa, M. P.; Gimeno, J. Eur. J. Inorg.
Chem. 2001, 571.
14. Experimental data for [Ru(h5-C9H7)(CH2Ph)(CO)(PPh3)]
(597.66) (calcd C, 70.34; H, 4.89. Found C, 70.54; H,
5.02%). 1H NMR (CDCl3): 2.23 (vt, JHH=9 Hz, 1H,
CH2), 2.84 (dd, JPH=9 Hz, 1H, CH2), 4.55 (s, 1H, C9H7),
5.20 (s, 1H, C9H7), 5.30 (s, 1H, C9H7), 6.34 (m, 2H,
C9H7), 6.7–7.4 (m, 22H, Ph, C9H7). 31P NMR (CDCl3):
60.8 (s). 13C{1H} NMR (CDCl3): l 7.9 (d, JCP=6.9 Hz,
CH2), 67.9 (d, JCP=7.6 Hz, C1), 78.3 (s, C3), 106.5 (s,
C2), 108.8, 110.2 (s, C3a, C7a), 121.1, 121.7, 124.7, 125.1
(s, C4, C5, C6, C7), 127.0–134.6 (m, Ph), 207.5 (d,
J
CP=19.6 Hz, CO). wmax (Nujol)/cm−1: 1917 (CO).
15. Bianchini, C.; Casares, J. A.; Peruzzini, M.; Romerosa,
A.; Zanobini, F. J. Am. Chem. Soc. 1996, 118, 4585.
16. Gamasa, M. P.; Gimeno, J.; Mart´ın-Vaca, B. M.; Borge,
J.; Garc´ıa-Granda, S.; Pe´rez-Carren˜o, E. Organometallics
1994, 13, 4045.
8. Trost, B. M.; Kulawiec, R. J. J. Am. Chem. Soc. 1993,
115, 2027.
9. Alvarez, P.; Gimeno, J.; Lastra, E.; Garcia-Granda, S.;
Van der Maelen, J. F.; Bassetti, M. Organometallics 2001,
20, 3762.
17. Nishibayashi, Y.; Wakiji, I.; Hidai, M. J. Am. Chem. Soc.
2000, 122, 11019.
10. Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999, 32,
311.
18. Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2001, 123,
8862.
11. Standard potential in dichloromethane ( 0.01 V) referred
to the pair [FeCp2]+/[FeCp2] (Cp=cyclopentadienyl).